Skip to main content

Enhancing Collaborative Filtering Using Implicit Relations in Data

  • Chapter
Transactions on Computational Collective Intelligence XXII

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 9655))

  • 567 Accesses

Abstract

This work presents a Recommender System (RS) that relies on distributed recommendation techniques and implicit relations in data. In order to simplify the experience of users, recommender systems pre-select and filter information in which they may be interested in. Users express their interests in items by giving their opinion (explicit data) and navigating through the web-page (implicit data). The Matrix Factorization (MF) recommendation technique analyze this feedback, but it does not take more heterogeneous data into account. In order to improve recommendations, the description of items can be used to increase the relations among data. Our proposal extends MF techniques by adding implicit relations in an independent layer. Indeed, using past preferences, we deeply analyze the implicit interest of users in the attributes of items. By using this, we transform ratings and predictions into “semantic values”, where the term semantic indicates the expansion in the meaning of ratings. The experimentation phase uses MovieLens and IMDb database. We compare our work against a simple Matrix Factorization technique. Results show accurate personalized recommendations. At least but not at last, both recommendation analysis and semantic analysis can be parallelized, alleviating time processing in large amount of data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://grouplens.org/datasets/movielens.

  2. 2.

    http://www.imdb.com/.

  3. 3.

    https://mahout.apache.org.

  4. 4.

    Denote that, since the convergence of the collaborative filtering has been already proved and the semantic approaches do not modify this convergence capability, we do not need a cross-validation set.

References

  1. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer, US (2011)

    MATH  Google Scholar 

  2. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc., pp. 43–52 (1998)

    Google Scholar 

  3. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artificial Intell. 2009, 4 (2009)

    Article  Google Scholar 

  4. Koren, Y.: The bellkor solution to the netflix grand prize. Netflix prize documentation (2009)

    Google Scholar 

  5. Peis, E., del Castillo, J.M., Delgado-López, J.: Semantic recommender systems. analysis of the state of the topic. Hipertext. net 6, 1–5 (2008)

    Google Scholar 

  6. Mobasher, B., Jin, X., Zhou, Y.: Semantically enhanced collaborative filtering on the web. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, pp. 57–76. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  8. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145–186. Springer, US (2011)

    Chapter  Google Scholar 

  9. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative filtering for the netflix prize. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 337–348. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Pilászy, I., Zibriczky, D., Tikk, D.: Fast als-based matrix factorization for explicit and implicit feedback datasets. In: Proceedings of the fourth ACM conference on Recommender systems, pp. 71–78. ACM (2010)

    Google Scholar 

  12. Takács, G., Tikk, D.: Alternating least squares for personalized ranking. In: Proceedings of the sixth ACM conference on Recommender systems, pp. 83–90. ACM (2012)

    Google Scholar 

  13. Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating minimization. In: Proceedings of the 45th annual ACM Symposium on Symposium on Theory of Computing, 665–674. ACM (2013)

    Google Scholar 

  14. Funk, S.: Netflix update: Try this at home (3rd place) (2006)

    Google Scholar 

  15. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Major components of the gravity recommendation system. ACM SIGKDD Explor. Newsl. 9(2), 80–83 (2007)

    Article  Google Scholar 

  16. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge discovery and data mining, pp. 426–434. ACM (2008)

    Google Scholar 

  17. Zhuo, G., Sun, J., Yu, X.: A framework for multi-type recommendations. In: Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 3, pp. 1884–1887. IEEE (2011)

    Google Scholar 

  18. Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rating systems. IEEE Intell. Syst. 22(3), 48–55 (2007)

    Article  Google Scholar 

  19. Li, Q., Wang, C., Geng, G.: Improving personalized services in mobile commerce by a novel multicriteria rating approach. In: Proceedings of the 17th International Conference on World Wide Web. WWW 2008, pp. 1235–1236. ACM, New York (2008)

    Google Scholar 

  20. Lakiotaki, K., Tsafarakis, S., Matsatsinis, N.: UTARec: a recommender system based on multiple criteria analysis. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 219–226. ACM (2008)

    Google Scholar 

  21. Mikeli, A., Apostolou, D., Despotis, D.: A multi-criteria recommendation method for interval scaled ratings. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 3, pp. 9–12 (2013)

    Google Scholar 

  22. Mikeli, A., Sotiros, D., Apostolou, D., Despotis, D.: A multi-criteria recommender system incorporating intensity of preferences. In: Fourth International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–6 (2013)

    Google Scholar 

  23. Liu, Q., Chen, E., Xiong, H., Ding, C.H., Chen, J.: Enhancing collaborative filtering by user interest expansion via personalized ranking. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(1), 218–233 (2012)

    Article  Google Scholar 

  24. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. the. Journal of machine Learning research 3, 993–1022 (2003)

    MATH  Google Scholar 

  25. Boim, R., Milo, T., Novgorodov, S.: Direc: Diversified recommendations for semantic-less collaborative filtering. In: IEEE 27th International Conference on Data Engineering (ICDE), pp. 1312–1315. IEEE (2011)

    Google Scholar 

  26. Boim, R., Milo, T., Novgorodov, S.: Diversification and refinement in collaborative filtering recommender. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 739–744. ACM (2011)

    Google Scholar 

  27. Fernández, Y.B., Arias, J.J.P., Nores, M.L., Solla, A.G., Cabrer, M.R.: Avatar: an improved solution for personalized tv based on semantic inference. IEEE Trans. Consum. Electron. 52(1), 223–231 (2006)

    Google Scholar 

  28. Pan, P.Y., Wang, C.H., Horng, G.J., Cheng, S.T.: The development of an ontology-based adaptive personalized recommender system. In: International Conference on Electronics and Information Engineering (ICEIE), vol. 1, pp. V1–76. IEEE (2010)

    Google Scholar 

  29. Katz, G., Ofek, N., Shapira, B., Rokach, L., Shani, G.: Using wikipedia to boost collaborative filtering techniques. In: Proceedings of the fifth ACM conference on Recommender systems. ACM, pp. 285–288 (2011)

    Google Scholar 

  30. Mabroukeh, N.R., Ezeife, C.I.: Ontology-based web recommendation from tags. In: IEEE 27th International Conference on Data Engineering Workshops (ICDEW), 2011. IEEE, pp. 206–211 (2011)

    Google Scholar 

  31. Werner, D., Cruz, C., Nicolle, C.: Ontology-based recommender system of economic articles (2013). arXiv preprint arxiv:1301.4781

  32. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  33. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey. Internet Math. 1(4), 485–509 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011). In: Proceedings of the 5th ACM conference on Recommender systems. RecSys 2011,. ACM, New York (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Pozo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pozo, M., Chiky, R., Métais, E. (2016). Enhancing Collaborative Filtering Using Implicit Relations in Data. In: Nguyen, N.T., Kowalczyk, R. (eds) Transactions on Computational Collective Intelligence XXII. Lecture Notes in Computer Science(), vol 9655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49619-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49619-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49618-3

  • Online ISBN: 978-3-662-49619-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics