Abstract
This work presents a Recommender System (RS) that relies on distributed recommendation techniques and implicit relations in data. In order to simplify the experience of users, recommender systems pre-select and filter information in which they may be interested in. Users express their interests in items by giving their opinion (explicit data) and navigating through the web-page (implicit data). The Matrix Factorization (MF) recommendation technique analyze this feedback, but it does not take more heterogeneous data into account. In order to improve recommendations, the description of items can be used to increase the relations among data. Our proposal extends MF techniques by adding implicit relations in an independent layer. Indeed, using past preferences, we deeply analyze the implicit interest of users in the attributes of items. By using this, we transform ratings and predictions into “semantic values”, where the term semantic indicates the expansion in the meaning of ratings. The experimentation phase uses MovieLens and IMDb database. We compare our work against a simple Matrix Factorization technique. Results show accurate personalized recommendations. At least but not at last, both recommendation analysis and semantic analysis can be parallelized, alleviating time processing in large amount of data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Denote that, since the convergence of the collaborative filtering has been already proved and the semantic approaches do not modify this convergence capability, we do not need a cross-validation set.
References
Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer, US (2011)
Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in artificial intelligence, Morgan Kaufmann Publishers Inc., pp. 43–52 (1998)
Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artificial Intell. 2009, 4 (2009)
Koren, Y.: The bellkor solution to the netflix grand prize. Netflix prize documentation (2009)
Peis, E., del Castillo, J.M., Delgado-López, J.: Semantic recommender systems. analysis of the state of the topic. Hipertext. net 6, 1–5 (2008)
Mobasher, B., Jin, X., Zhou, Y.: Semantically enhanced collaborative filtering on the web. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, pp. 57–76. Springer, Heidelberg (2004)
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)
Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145–186. Springer, US (2011)
Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)
Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative filtering for the netflix prize. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 337–348. Springer, Heidelberg (2008)
Pilászy, I., Zibriczky, D., Tikk, D.: Fast als-based matrix factorization for explicit and implicit feedback datasets. In: Proceedings of the fourth ACM conference on Recommender systems, pp. 71–78. ACM (2010)
Takács, G., Tikk, D.: Alternating least squares for personalized ranking. In: Proceedings of the sixth ACM conference on Recommender systems, pp. 83–90. ACM (2012)
Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating minimization. In: Proceedings of the 45th annual ACM Symposium on Symposium on Theory of Computing, 665–674. ACM (2013)
Funk, S.: Netflix update: Try this at home (3rd place) (2006)
Takács, G., Pilászy, I., Németh, B., Tikk, D.: Major components of the gravity recommendation system. ACM SIGKDD Explor. Newsl. 9(2), 80–83 (2007)
Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge discovery and data mining, pp. 426–434. ACM (2008)
Zhuo, G., Sun, J., Yu, X.: A framework for multi-type recommendations. In: Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 3, pp. 1884–1887. IEEE (2011)
Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rating systems. IEEE Intell. Syst. 22(3), 48–55 (2007)
Li, Q., Wang, C., Geng, G.: Improving personalized services in mobile commerce by a novel multicriteria rating approach. In: Proceedings of the 17th International Conference on World Wide Web. WWW 2008, pp. 1235–1236. ACM, New York (2008)
Lakiotaki, K., Tsafarakis, S., Matsatsinis, N.: UTARec: a recommender system based on multiple criteria analysis. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 219–226. ACM (2008)
Mikeli, A., Apostolou, D., Despotis, D.: A multi-criteria recommendation method for interval scaled ratings. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 3, pp. 9–12 (2013)
Mikeli, A., Sotiros, D., Apostolou, D., Despotis, D.: A multi-criteria recommender system incorporating intensity of preferences. In: Fourth International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–6 (2013)
Liu, Q., Chen, E., Xiong, H., Ding, C.H., Chen, J.: Enhancing collaborative filtering by user interest expansion via personalized ranking. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(1), 218–233 (2012)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. the. Journal of machine Learning research 3, 993–1022 (2003)
Boim, R., Milo, T., Novgorodov, S.: Direc: Diversified recommendations for semantic-less collaborative filtering. In: IEEE 27th International Conference on Data Engineering (ICDE), pp. 1312–1315. IEEE (2011)
Boim, R., Milo, T., Novgorodov, S.: Diversification and refinement in collaborative filtering recommender. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 739–744. ACM (2011)
Fernández, Y.B., Arias, J.J.P., Nores, M.L., Solla, A.G., Cabrer, M.R.: Avatar: an improved solution for personalized tv based on semantic inference. IEEE Trans. Consum. Electron. 52(1), 223–231 (2006)
Pan, P.Y., Wang, C.H., Horng, G.J., Cheng, S.T.: The development of an ontology-based adaptive personalized recommender system. In: International Conference on Electronics and Information Engineering (ICEIE), vol. 1, pp. V1–76. IEEE (2010)
Katz, G., Ofek, N., Shapira, B., Rokach, L., Shani, G.: Using wikipedia to boost collaborative filtering techniques. In: Proceedings of the fifth ACM conference on Recommender systems. ACM, pp. 285–288 (2011)
Mabroukeh, N.R., Ezeife, C.I.: Ontology-based web recommendation from tags. In: IEEE 27th International Conference on Data Engineering Workshops (ICDEW), 2011. IEEE, pp. 206–211 (2011)
Werner, D., Cruz, C., Nicolle, C.: Ontology-based recommender system of economic articles (2013). arXiv preprint arxiv:1301.4781
Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)
Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey. Internet Math. 1(4), 485–509 (2004)
Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011). In: Proceedings of the 5th ACM conference on Recommender systems. RecSys 2011,. ACM, New York (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Pozo, M., Chiky, R., Métais, E. (2016). Enhancing Collaborative Filtering Using Implicit Relations in Data. In: Nguyen, N.T., Kowalczyk, R. (eds) Transactions on Computational Collective Intelligence XXII. Lecture Notes in Computer Science(), vol 9655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49619-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-662-49619-0_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49618-3
Online ISBN: 978-3-662-49619-0
eBook Packages: Computer ScienceComputer Science (R0)