Abstract
With the on growing usage of microblogging services, such as Twitter, millions of users share opinions daily on virtually everything. Making sense of this huge amount of data using sentiment and emotion analysis, can provide invaluable benefits to organizations trying to better understand what the public thinks about their services and products. While the vast majority of now-a-days researches are solely focusing on improving the algorithms used for sentiment and emotion evaluation, the present one underlines the benefits of using a semantic based approach for modeling the analysis’ results, the emotions and the social media specific concepts. By storing the results as structured data, the possibilities offered by semantic web technologies, such as inference and accessing the vast knowledge in Linked Open Data, can be fully exploited. The paper also presents a novel semantic social media analysis platform, which is able to properly emphasize the users’ complex feeling such as happiness, affection, surprise, anger or sadness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
References
Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation, Valletta, pp. 1320–1326 (2010)
Delcea, C., Bradea, I., Paun, R., Scarlat, E.: How impressionable are you? - grey knowledge, groups and strategies in OSN. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI 2015. LNCS, vol. 9329, pp. 171–180. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24069-5_16
Kontopoulos, E., Berberidis, C., Dergiades, T., Bassiliades, N.: Ontology-based sentiment analysis of Twitter posts. Expert Syst. Appl. 40, 4065–4074 (2013)
Delcea, C., Cotfas, L.-A., Paun, R.: Understanding online social networks’ users – a Twitter approach. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS, vol. 8733, pp. 145–153. Springer, Heidelberg (2014)
Delcea, C., Cotfas, L.-A., Paun, R.: Grey social networks. In: Hwang, D., Jung, J.J., Nguyen, N.-T. (eds.) ICCCI 2014. LNCS, vol. 8733, pp. 125–134. Springer, Heidelberg (2014)
Torkildson, M.K., Starbird, K., Aragon, C.: Analysis and visualization of sentiment and emotion on crisis tweets. In: Luo, Y. (ed.) CDVE 2014. LNCS, vol. 8683, pp. 64–67. Springer, Heidelberg (2014)
Rill, S., Reinel, D., Scheidt, J., Zicari, R.V.: PoliTwi: Early detection of emerging political topics on Twitter and the impact on concept-level sentiment analysis. Knowl.-Based Syst. 69, 24–33 (2014)
Delcea, C., Bradea, I., Paun, R., Friptu, A.: A Healthcare companies’ performance view through OSN. In: Barbucha, D., Nguyen, N.T., Batubara, J. (eds.) New Trends in Intelligent Information and Database Systems. SCI, vol. 598, pp. 333–342. Springer, Heidelberg (2015)
Nassirtoussi, A.K., Aghabozorgi, S., Wah, T.Y., Ngo, D.C.L.: Text mining for market prediction: a systematic review. Expert Syst. Appl. 41, 7653–7670 (2014)
Ghiassi, M., Skinner, J., Zimbra, D.: Twitter brand sentiment analysis: a hybrid system using n-gram analysis and dynamic artificial neural network. Expert Syst. Appl. 40, 6266–6282 (2013)
Mostafa, M.M.: More than words: social networks’ text mining for consumer brand sentiments. Expert Syst. Appl. 40, 4241–4251 (2013)
Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment strength detection for the social web. J. Am. Soc. Inf. Sci. Technol. 63, 163–173 (2012)
Robaldo, L., Di Caro, L.: OpinionMining-ML. Comput. Stand. Interfaces 35, 454–469 (2013)
Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5, 1093–1113 (2014)
Tsytsarau, M., Palpanas, T.: Survey on mining subjective data on the web. Data Min. Knowl. Discov. 24, 478–514 (2012)
Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5, 1–167 (2012)
Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell. Syst. 21, 96–101 (2006)
Borst, W.N.: Construction of engineering ontologies for knowledge sharing and reuse. Universiteit Twente (1997)
Roberts, K., Roach, M., Johnson, J.: EmpaTweet: annotating and detecting emotions on Twitter. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation, Istanbul, pp. 3806–3813 (2012)
Baggia, P., Burkhardt, F., Pelachaud, C., Peter, C., Zovato, E.: Emotion Markup Language (EmotionML) 1.0. http://www.w3.org/TR/emotionml/
Ashimura, K., Baggia, P., Burkhardt, F., Oltramari, A., Peter, C., Zovato, E.: Vocabularies for EmotionML. http://www.w3.org/TR/2012/NOTE-emotion-voc-20120510/
Westerski, A., Iglesias Fernandez, C.A., Tapia Rico, F.: Linked opinions: describing sentiments on the structured web of data. Presented at the 4th International Workshop Social Data on the Web, Bonn, Germany (2011)
Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-Reyes, S., Zednik, S., Zhao, J.: PROV-O: The PROV Ontology. http://www.w3.org/TR/prov-o/
Hastings, J., Ceusters, W., Smith, B., Mulligan, K.: Dispositions and processes in the Emotion Ontology. In: Proceedings of the ICBO 2011 (2011)
Francisco, V., Hervás, R., Peinado, F., Gervás, P.: EmoTales: creating a corpus of folk tales with emotional annotations. Lang. Resour. Eval. 46, 341–381 (2012)
Montejo-Ráez, A., Martínez-Cámara, E., Martín-Valdivia, M.T., Ureña-López, L.A.: Ranked WordNet graph for sentiment polarity classification in Twitter. Comput. Speech Lang. 28, 93–107 (2014)
Baldoni, M., Baroglio, C., Patti, V., Rena, P.: From tags to emotions: ontology-driven sentiment analysis in the social semantic web. Presented at the Intelligenza Artificiale (2012)
Togias, K., Kameas, A.: An ontology-based representation of the Twitter REST API. Presented, November 2012
Cotfas, L.-A., Delcea, C., Roxin, I., Paun, R.: Twitter ontology-driven sentiment analysis. In: Barbucha, D., Nguyen, N.T., Batubara, J. (eds.) New Trends in Intelligent Information and Database Systems. SCI, vol. 598, pp. 131–139. Springer, Cham (2015)
Breslin, J.G., Passant, A., Decker, S.: The Social Semantic Web. Springer, Heidelberg (2009)
Fornara, N., Ježić, G., Kušek, M., Lovrek, I., Podobnik, V., Tržec, K.: Semantics in multi-agent systems. In: Ossowski, S. (ed.) Agreement Technologies, pp. 115–136. Springer, Dordrecht (2013)
Maynard, D., Bontcheva, K., Rout, D.: Challenges in developing opinion mining tools for social media. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation, Istanbul, pp. 15–22 (2012)
Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: the good the bad and the omg! In: Proceedings of the Fifth International Conference on Weblogs and Social Media, Barcelona, pp. 538–541 (2011)
Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H.-A., Mankov-skii, S.: Solving big data challenges for enterprise application performance management. Proc. VLDB Endowment 5, 1724–1735 (2012)
Carter, S., Weerkamp, W., Tsagkias, M.: Microblog language identification: overcoming the limitations of short, unedited and idiomatic text. Lang. Resour. Eval. 47, 195–215 (2013)
Cavnar, W., Trenkle, J.: N-gram-based text categorization. In: Proceedings of the 3rd Annual Symposium on Document Analysis and Information Retrieval, SDAIR 1994 (1994)
Bao, Y., Quan, C., Wang, L., Ren, F.: The role of pre-processing in Twitter sentiment analysis. In: Huang, D.-S., Jo, K.-H., Wang, L. (eds.) ICIC 2014. LNCS, vol. 8589, pp. 615–624. Springer, Heidelberg (2014)
Acknowledgments
The study was produced as part of the SCOPANUM research project, supported by grants from CSFRS (http://csfrs.fr/), and a doctoral grant from Pays de Montbéliard Agglomération (http://www.agglo-montbeliard.fr/). The authors also acknowledge the support of Leverhulme Trust International Network research project “IN-2014-020”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Cotfas, LA., Delcea, C., Segault, A., Roxin, I. (2016). Semantic Web-Based Social Media Analysis. In: Nguyen, N.T., Kowalczyk, R. (eds) Transactions on Computational Collective Intelligence XXII. Lecture Notes in Computer Science(), vol 9655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49619-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-662-49619-0_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49618-3
Online ISBN: 978-3-662-49619-0
eBook Packages: Computer ScienceComputer Science (R0)