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Abstract. This paper contributes to a theory of the behaviour of “finite-state”
systems that is generic in the system type. We propose that such systems are
modeled as coalgebras with a finitely generated carrier for an endofunctor on a
locally finitely presentable category. Their behaviour gives rise to a new fixpoint
of the coalgebraic type functor called locally finite fixpoint (LFF). We prove that
if the given endofunctor preserves monomorphisms then the LFF always exists
and is a subcoalgebra of the final coalgebra (unlike the rational fixpoint previously
studied by Adámek, Milius and Velebil). Moreover, we show that the LFF is
characterized by two universal properties: 1. as the final locally finitely generated
coalgebra, and 2. as the initial fg-iterative algebra. As instances of the LFF we first
obtain the known instances of the rational fixpoint, e.g. regular languages, rational
streams and formal power-series, regular trees etc. And we obtain a number of
new examples, e.g. (realtime deterministic resp. non-deterministic) context-free
languages, constructively S-algebraic formal power-series (and any other instance
of the generalized powerset construction by Silva, Bonchi, Bonsangue, and Rutten)
and the monad of Courcelle’s algebraic trees.

1 Introduction

Coalgebras capture many types of state based system within a uniform and mathe-
matically rich framework [39]. One outstanding feature of the general theory is final
semantics which gives a fully abstract account of system behaviour. For example, coal-
gebraic modelling of deterministic automata (without a finiteness restriction on state
sets) yields the set of all formal languages as a final model, and restricting to finite
automata one precisely obtains the regular languages [38]. This correspondence has been
generalized to locally finitely presentable categories [8, 20], where finitely presentable
objects play the role of finite sets, leading to the notion of rational fixpoint that provides
final semantics to all models with finitely presentable carrier [31]. It is known that the
rational fixpoint is fully abstract (identifies all behaviourally equivalent states) as long as
finitely presentable objects agree with finitely generated objects in the base category [12,
Proposition 3.12]. While this is the case in some categories (e.g. sets, posets, graphs,
vector spaces, commutative monoids), it is currently unknown in other base categories
that are used in the construction of system models, for example in idempotent semirings
(used in the treatment of context-free grammars [43]), in algebras for the stack monad
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(used for modelling configurations of stack machines [23]); or it even fails, for example
in the category of finitary monads on sets (used in the categorical study of algebraic
trees [7]), or Eilenberg-Moore categories for a monad in general (the target category of
generalized determinization [41], in which the above examples live). Coalgebras over
a category of Eilenberg-Moore algebras over Set in particular provide a paradigmatic
setting: automata that describe languages beyond the regular languages consist of a finite
state set, but their transitions produce side effects such as the manipulation of a stack.
These can be described by a monad, so that the (infinite) set of system states (machine
states plus stack content) is described by a free algebra (for that monad) that is gener-
ated by the finite set of machine states. This is formalized by the generalized powerset
construction [41] and interacts nicely with the coalgebraic framework we present.

Technically, the shortcoming of the rational fixpoint is due to the fact that finitely
presentable objects are not closed under quotients, so that the rational fixpoint itself may
fail to be a subcoalgebra of the final coalgebra and so identifies too little behaviour. The
main conceptual contribution of this paper is the insight that also in cases where finitely
presentable and finitely generated do not agree, the locally finite fixpoint provides a fully
abstract model of finitely generated behaviour. We give a construction of the locally
finite fixpoint, and support our claim both by general results and concrete examples: we
show that under mild assumptions, the locally finite fixpoint always exists, and is indeed
a subcoalgebra of the final coalgebra. Moreover, we give a characterization of the locally
finite fixpoint as the initial iterative algebra. We then instantiate our results to several
scenarios studied in the literature.

First, we show that the locally finite fixpoint is universal (and fully abstract) for
the class of systems produced by the generalized powerset construction over Set: every
determinized finite-state system induces a unique homomorphism to the locally finite
fixpoint, and the latter contains precisely the finite-state behaviours.

Applied to the coalgebraic treatment of context-free languages, we show that the
locally finite fixpoint yields precisely the context-free languages, and real-time determin-
istic context-free languages, respectively, when modelled using algebras for the stack
monad of [23]. For context-free languages weighted in a semiring S, or equivalently
for constructively S-algebraic power series [36], the locally finite fixpoint comprises
precisely those, by phrasing the results of Winter et al. [44] in terms of the generalized
powerset construction. Our last example shows the applicability of our results beyond
categories of Eilenberg-Moore algebras over Set, and we characterize the monad of
Courcelle’s algebraic trees over a signature [16, 7] as the locally finite fixpoint of an
associated functor (on a category of monads), solving an open problem of [7].

The work presented here is based on the third author’s master thesis in [45]. Most
proofs are omitted; they can be found in the appendix.

2 Preliminaries and Notation

Locally finitely presentable categories. A filtered colimit is the colimit of a diagram
D → C whereD is filtered (every finite subdiagram has a cocone inD) and directed ifD
is additionally a poset. Finitary functors preserve filtered (equivalently directed) colimits.
Objects C ∈ C are finitely presentable (fp) if the hom-functor C(C,−) preserves filtered
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(equivalently directed) colimits, and finitely generated (fg) if C(C,−) preserves directed
colimits of monos (i.e. colimits of directed diagrams where all connecting morphisms are
monic). Clearly any fp object is fg, but not vice versa. Also, fg objects are closed under
strong epis (quotients) which fails for fp objects in general. A cocomplete category is
locally finitely presentable (lfp) if the full subcategory Cfp of finitely presentable objects
is essentially small, i.e. is up to isomorphism only a set, and every object C ∈ C is a
filtered colimit of a diagram in Cfp. We refer to [20, 8] for further details.

It is well known that the categories of sets, posets and graphs are lfp with finitely
presentable objects precisely the finite sets, posets, graphs, respectively. The category of
vector spaces is lfp with finite-dimensional spaces being fp. Every finitary variety is lfp
(i.e. an equational class of algebras induced by finite-arity operations or equivalently the
Eilenberg-Moore category for a finitary Set-Monad, see Section 4.1 later). The finitely
generated objects are the finitely generated algebras, and finitely presentable objects are
algebras specified by finitely many generators and relations. This includes the categories
of groups, monoids, (idempotent) semirings, semi-modules, etc. Every lfp category has
mono/strong epi factorization [8, Proposition 1.16], i.e. every f factors as f = m · e with
m mono (denoted by �), e strong epi (denoted by �), and we call the domain Im(f)
of e the image of f . Any strong epi e has the diagonal fill-in property, i.e. m · g = h · e
with m mono and e strong epi gives a unique d such that m · d = h and g = d · e.
Coalgebras. If H : C → C is an endofunctor, H-coalgebras are pairs (C, c) with
c : C → HC, and C is the carrier of (C, c). Homomorphisms f : (C, c) → (D, d)
are maps f : C → D such that Hf · c = d · f . This gives a category denoted
by CoalgH . If its final object exists then this final H-coalgebra (νH, τ) represents
a canonical domain of behaviours of H-typed systems, and induces for each (C, c)
a unique homomorphism, denoted by c†, giving semantics to the system (C, c). The
final coalgebra always exists provided C is lfp and H is finitary. The forgetful functor
CoalgH → C creates colimits and reflects monos and epis. A morphism f in CoalgH is
mono-carried (resp. epi-carried) if the underlying morphism in C is monic (resp. epic).
Strong epi/mono factorizations lift from C to CoalgH whenever H preserves monos
yielding epi-carried/mono-carried factorizations. A directed union of coalgebras is the
colimit of a directed diagram in CoalgH where all connecting morphisms are mono-
carried.

The Rational Fixpoint. For C lfp and H : C → C finitary let CoalgfpH denote the full
subcategory of CoalgH of coalgebras with fp carrier, and CoalglfpH the full subcategory
of CoalgH of coalgebras that arise as filtered colimits of coalgebras with fp carrier [31,
Corollary III.13]. The coalgebras in CoalglfpH are called lfp coalgebras and for C = Set
those are precisely the locally finite coalgebras (i.e. those coalgebras where every element
is contained in a finite subcoalgebra). The final lfp coalgebra exists and is the colimit
of the inclusion CoalgfpH ↪→ CoalgH , and it is a fixpoint of H (see [6]) called the
rational fixpoint of H . Here are some examples: the rational fixpoint of a polynomial set
functor associated to a finitary signature Σ is the set of rational Σ-trees [6], i.e. finite and
infinite Σ-trees having, up to isomorphism, finitely many subtrees only, and one obtains
rational weighted languages for Noetherian semirings S for a functor on the category of
S-modules [12], and rational λ-trees for a functor on the category of presheaves on finite
sets [2] or for a related functor on nominal sets [34]. If the classes of fp and fg objects
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coincide in C, then the rational fixpoint is a subcoalgebra of the final coalgebra [12,
Theorem 3.12]. This is the case in the above examples, but not in general, see [12,
Example 3.15] for a concrete example where the rational fixpoint does not identify
behaviourally equivalent states. Conversely, even if the classes differ, the rational fixpoint
can be a subcoalgebra, e.g. for any constant functor.
Iterative Algebras. If H : C → C is an endofunctor, an H-algebra (A, a : HA → A)
is iterative if every flat equation morphism e : X → HX + A where X is an fp
object has a unique solution, i.e. if there exists a unique e† : X → A such that
e† = [a, idA] · (He† + idA) · e. The rational fixpoint is also characterized as the initial
iterative algebra [6] and is the starting point of the coalgebraic approach to Elgot’s
iterative theories [18] and to the iteration theories of Bloom and Ésik [11, 6, 3, 4].

3 The Locally Finite Fixpoint

The locally finite fixpoint can be characterized similarly to the rational fixpoint, but with
respect to coalgebras with finitely generated (not finitely presentable) carrier. We show
that the locally finite fixpoint always exists, and is a subcoalgebra of the final coalgebra,
i.e. identifies all behaviourally equivalent states. As a consequence, the locally finite
fixpoint provides a fully abstract notion of finitely generated behaviour. From now on,
we rely on the following:

Assumption 3.1. Throughout the rest of the paper we assume that C is an lfp category
and that H : C → C is finitary and preserves monomorphisms.

As for the rational fixpoint, we denote the full subcategory of CoalgH comprising all
coalgebras with finitely generated carrier by CoalgfgH and have the following notion of
locally finitely generated coalgebra.

Definition 3.2. A coalgebra X x−→ HX is called locally finitely generated (lfg) if for all
f : S → X with S finitely generated, there exist a coalgebra p : P → HP in CoalgfgH ,
a coalgebra morphism h : (P, p)→ (X,x) and some f ′ : S → P such that h · f ′ = f .
CoalglfgH ⊆ CoalgH denotes the full subcategory of lfg coalgebras.

Equivalently, one can characterize lfg coalgebras in terms of subobjects and subcoal-
gebras, making it a generalization of of local finiteness in Set, i.e. the property of a
coalgebra that every element is contained in a finite subcoalgebra.

Lemma 3.3. X x−→ HX is an lfg coalgebra iff for all fg subobjects S
f
X , there exist

a subcoalgebra h : (P, p) � (X,x) and a mono f ′ : S � P with h · f ′ = f , i.e. S is
a subobject of P .

Proof. (⇒) Given some mono f : S � X , factor the induced h into some strong
epi-carried and mono-carried homomorphisms and use that fg objects are closed under
strong epis. (⇐) Factor f : S → X into an epi and a mono g : Im(f) � X and use the
diagonal fill-in property for g. ut

Evidently all coalgebras with finitely generated carriers are lfg. Moreover, lfg coalgebras
are precisely the filtered colimits of coalgebras from CoalgfgH .
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Proposition 3.4. Every filtered colimit of coalgebras from CoalgfgH is lfg.

Proof (Sketch; for the full proof see the appendix). One first proves that directed unions
of coalgebras from CoalgfgH are lfg. Now given a filtered colimit ci : Xi → C
where Xi are coalgebras in CoalgfgH , one epi-mono factorizes every colimit injection:
ci = (Xi Ti Cei mi ). Using the diagonalization of the factorization one sees that
the Ti form a directed diagram of subobjects of C. Furthermore C is the directed union
of the Ti and therefore an lfg coalgebra as desired. ut

Proposition 3.5. Every lfg coalgebra (X,x) is a directed colimit of its subcoalgebras
from CoalgfgH .

Proof. Recall from [8, Proof I of Theorem 1.70] that X is the colimit of the diagram of
all its finitely generated subobjects. Now the subdiagram given by all subcoalgebras of
X is cofinal. Indeed, this follows directly from the fact that (X,x) is an lfg coalgebra:
for every subobject S � X , S fg, we have a subcoalgebra of (X,x) in CoalgfgH
containing S. ut

Corollary 3.6. The lfg coalgebras are precisely the filtered colimits, or equivalently
directed unions, of coalgebras with fg carrier.

As a consequence, a coalgebra is final in CoalglfgF if there is a unique morphism from
every coalgebra with finitely generated carrier.

Proposition 3.7. An lfg coalgebra L is final in CoalglfgH iff for every for every coalge-
bra X in CoalgfgH there exists a unique coalgebra morphism from X to L.

The proof is analogous to [31, Theorem 3.14]; the full argument can be found in the
Appendix. Cocompleteness of C ensures that the final lfg coalgebra always exists.

Theorem 3.8. The category CoalglfgH has a final object, and the final lfg coalgebra is
the colimit of the inclusion CoalgfgH ↪→ CoalglfgH .

Proof. By Corollary 3.6, the colimit of the inclusion CoalgfgH ↪→ CoalglfgH is the
same as the colimit of the entire CoalglfgH . And the latter is clearly the final object of
CoalglfgH . ut

This theorem provides a construction of the final lfg coalgebra collecting precisely the
behaviours of the coalgebras with fg carriers. In the following we shall show that this
construction does indeed identify precisely behaviourally equivalent states, i.e. the final
lfg coalgebra is always a subcoalgebra of the final coalgebra. Just like fg objects are
closed under quotients – in contrast to fp objects – we have a similar property of lfg
coalgebras:

Lemma 3.9. Lfg coalgebras are closed under strong quotients, i.e. for every strong epi
carried coalgebra homomorphisms X � Y , if X is lfg then so is Y .

The failure of this property for lfp coalgebras is the reason why the rational fixpoint
is not necessarily a subcoalgebra of the final coalgebra and in particular the rational
fixpoint in [12, Example 3.15] is an lfp coalgebra for which the property fails.
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Theorem 3.10. The final lfg H-coalgebra is a subcoalgebra of the final H-coalgebra.

Proof. Let (L, `) be the final lfg coalgebra. Consider the unique coalgebra morphism
L→ νH and take its factorization:

(L, `) (I, i) (νH, τ)
e

id
m

i†
, with e strong epi in C.

By Lemma 3.9, I is an lfg coalgebra and so by finality of L we have the coalgebra
morphism i† such that idL = i† · e. It follows that e is monic and therefore an iso. ut

In other words, the final lfg H-coalgebra collects precisely the finitely generated be-
haviours from the final H-coalgebra. We now show that the final lfg coalgebra is a
fixpoint of H which hinges on the following:

Lemma 3.11. For any lfg coalgebra C c−→ HC, the coalgebra HC Hc−−→ HHC is lfg.

Proof. Consider f : S → HC with S finitely generated. As C is lfp we know that
HC is the colimit of its fg subobjects, and so f : S → HC factors through some
subobject inq : Q � HC with Q fg and f = inq · f ′. On the other hand, (C, c)
is lfg, i.e. the directed union of its subcoalgebras from CoalgfgH . Then, since H is
finitary and mono-preserving, HC c−→ HHC is also a directed union and the morphism

inq : Q → HC factors through some HP
Hp−−→ HHP with (P, p) ∈ CoalgfgH via

inp : (P, p) � (C, c), i.e. H inp · q = inq . Finally, we can construct a coalgebra with fg
carrier

Q+ P
[q,p]−−−→ HP

H inr−−−→ H(Q+ P )

and a coalgebra homomorphism H inp · [q, p] : Q+ P → HC. In the diagram

S HC HHC

HP HHP

Q Q+ P HP H(Q+ P )

f

f ′

Hc

Hp

H inp HH inp

inq

q

inl [q,p]

[q,p]

H inr

H[q,p]

H(H inp·[q,p])

every part trivially commutes, so H inp · [q, p] is the desired homomorphism. ut

So with a proof in virtue to Lambek’s Lemma [28, Lemma 2.2], we obtain the desired
fixpoint:

Theorem 3.12. The carrier of the final lfg H-coalgebra is a fixpoint of H .

We denote the above fixpoint by (ϑH, `) and call it the locally finite fixpoint (LFF)
of H . In particular, the LFF always exists under Assumption 3.1, providing a finitary
corecursion principle.
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3.1 Iterative Algebras

Recall from [6, 31] that the rational fixpoint of a functor H has a universal property both
as a coalgebra and as an algebra for H . This situation is completely analogous for the
LFF. We already established its universal property as a coalgebra in Theorem 3.8. Now
we turn to study the LFF as an algebra for H .

Definition 3.13. An equation morphism e in an object A is a morphism X → HX+A,
where X is a finitely generated object. If A is the carrier of an algebra α : HA→ A,
we call the C-morphism e† : X → A a solution of e if [α, idA] · He† + idA · e = e†.
An H-algebra A is called fg-iterative if every equation morphism in A has a unique
solution.

Example 3.14 (see [30, Example 2.5 (iii)]). The final H-coalgebra (considered as an
algebra for H) is fg-iterative. In fact, in this algebra even morphisms X → HX + νH
where X is not necessarily an fg object have a unique solution.

Definition 3.15. For fg-iterative algebras A and C, an equation morphism e : X →
HX + A and a morphism h : A → C of C define an equation morphism h • e in C

as X HX +A HX + C.e HX+h We say that h preserves the solution e† of
e if h · e† = (h • e)†. The morphism h is called solution preserving if it preserves the
solution of any equation morphism e.

Similarly to [6], the algebra homomorphisms are precisely the solution preserving
morphisms between iterative algebras, the proof is also very similar.

Proposition 3.16. The locally finite fixpoint is fg-iterative.

Theorem 3.17. For an fg-iterative algebra α : HA→ A and an lfg coalgebra e : X →
HX there is a unique C-morphism ue : X → A such that ue = α ·Hue · e.

Corollary 3.18. The locally finite fixpoint is the initial fg-iterative algebra.

3.2 Relation to the Rational Fixpoint

There are examples, where the rational fixpoint is not a subcoalgebra of the final coalge-
bra. In categories, where fp and fg objects coincide, the rational fixpoint and the LFF
coincide as well (cf. the respective colimit-construction in Section 2 and Theorem 3.8).
In this section we will see, under slightly stronger assumptions, that fg-carried coalgebras
are quotients of fp-carried coalgebras, and in particular the locally finite fixpoint is a
quotient of the rational fixpoint: namely its image in the final coalgebra.

Assumption 3.19. In addition to Assumption 3.1, assume that in the base category C,
every finitely presentable object is a strong quotient of a finitely presentable strong epi
projective object and that the endofunctor H also preserves strong epis.

The condition that every fg object is the strong quotient of a strong epi projective often
is phrased as having enough strong epi projectives [14]. This assumption is apparently
very strong but still is met in many situations:
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Example 3.20. – In categories in which all (strong) epis are split, every object is
projective and any endofunctor preserves epis, e.g. in Set or VecK .

– In the category of finitary endofunctors Funf(Set), all polynomial functors are
projective. The finitely presentable functors are quotients of polynomial functors
HΣ , where Σ is a finite signature.

– In the Eilenberg-Moore category SetT for a finitary monad T , strong epis are
surjective T -algebra homomorphisms, and thus preserved by any endofunctor. In
SetT , every free algebra TX is projective; this is easy to see using the projectivity
of X in Set. Every finitely generated object of SetT is a strong quotient of some
free algebra TX with X finite. For more precise definitions, see Section 4.1 later.

Proposition 3.21. Every coalgebra in CoalgfgH is a strong quotient of a coalgebra
with finitely presentable carrier.

Theorem 3.22. ϑH is the image of the rational fixpoint %H in the final coalgebra.

Proof. Consider the factorization (%H, r)
e
� (B, b)

m
� (νH, τ). Since %H is the colimit

of all fp carried H-coalgebras it is an lfg coalgebra by Proposition 3.4 using that fp
objects are also fg. Hence, by Lemma 3.9 the coalgebraB is lfg, too. By Proposition 3.7 it
now suffices to show that from every (X,x) ∈ CoalgfgH there exists a unique coalgebra
morphism into (B, b). Given (X,x) in CoalgfgH , it is the quotient q : (P, p) � (X,x)
of an fp-carried coalgebra by Proposition 3.21. Hence, we obtain a unique coalgebra
morphism p† : (P, p)→ (%H, r). By finality of νH , we have m · e · p† = x† · q (with
x† : (X,x) → (νH, τ)). So the diagonal fill-in property induces a homomorphism
(X,x)→ (B, b), being the only homomorphism (X,x)→ (B, b) by the finality of νH
and because m is monic. ut

4 Instances of the Locally Finite Fixpoint

We will now present a number of instances of the LFF. First note, that all the known
instances of the rational fixpoint (see e.g. [6, 31, 12] are also instances of the locally
finite fixpoint, because in all those cases the fp and fg objects coincide. For example, the
class of regular languages is the rational fixpoint of 2× (−)Σ on Set. In this section, we
will study further instances of the LFF that are most likely not instances of the rational
fixpoint and which – to the best of our knowledge – have not been characterized by a
universal property yet:

1. Behaviours of finite-state machines with side-effects as considered by the generalized
powerset construction (cf. Section 4.1),particularly the following.
(a) Deterministic and ordinary context-free languages obtained as the behaviours

of deterministic and non-deterministic stack-machines, respectively.
(b) Constructively S-algebraic formal power series, i.e. the “context-free” subclass

of weighted languages with weights from a semiring S, yielded from weighted
context-free grammars.

2. The monad of Courcelle’s algebraic trees.
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4.1 Generalized Powerset Construction

The determinization of a non-deterministic automaton using the powerset construction
is an instance of a more general framework, described by Silva, Bonchi, Bonsangue,
and Rutten [41] based on an observation by Bartels [10] (see also Jacobs [26]). In that
generalized powerset construction, an automaton with side-effects is turned into an
ordinary automaton by internalizing the side-effects in the states. The LFF interacts
well with this construction, because it precisely captures the behaviours of finite-state
automata with side effects. The notion of side-effect is formalized by a monad, which
induces the category, in which the LFF is considered.

In the following we assume that readers are familiar with monads and Eilenberg-
Moore algebras (see e.g. [29] for an introduction). For a monad T on C we denote by
CT the category of Eilenberg-Moore algebras. Recall from [8, Corollary 2.75] that if C
is lfp (in most of our examples C is Set) and T is finitary then CT is lfp, too, and for
every fp object X the free Eilenberg-Moore algebra TX is fp in CT . In all the examples
we consider below, the classes of fp and fg objects either provably differ or it is still
unknown whether these classes coincide.

Example 4.1. In Sections 4.4 and 4.5 we are going to make use of Moggi’s exception
monad transformer (see e.g. [15]). Let us recall that for a fixed object E, the finitary
functor (−) + E together with the unit ηX = inl : X → X + E and multiplication
µX = idX + [idE , idE ] : X + E + E → X + E form a finitary monad, the exception
monad. Its algebras are E-pointed objects, i.e. objects X , together with a morphism
E → X , and homomorphisms are morphisms preserving the pointing. So the induced
Eilenberg-Moore category is just the slice category C(−)+E ∼= E/C.

Now, given any monad T we obtain a new monad T (−+ E) with obvious unit and
multiplication. An Eilenberg-Moore algebra for T (− + E) consists of an Eilenberg-
Moore algebra for T and an E-pointing, and homomorphisms are T -algebra homomor-
phisms preserving the pointing [25].

Now an automaton with side-effects is modelled as an HT -coalgebra, where T is a
finitary monad on C providing the type of side-effect. For example, for HX = 2×XΣ ,
where Σ is an input alphabet, 2 = {0, 1} and T the finite powerset monad on Set, HT -
coalgebras are non-deterministic automata. However, the coalgebraic semantics using
the final HT -coalgebra does not yield the usual language semantics of non-deterministic
automata. To obtain this one considers the final coalgebra of a lifting of H to CT . Denote
by U : CT → C the canonical forgetful functor.

Definition 4.2. For a functor H : C → C and a monad T : C → C, a lifting of H is a
functor HT : CT → CT such that H · U = U ·HT .

If such a (not necessarily unique) lifting exists, the generalized powerset construction
transforms an HT -coalgebra into a HT -coalgebra on CT : For a coalgebra x : X →
HTX ,HTX carries an Eilenberg-Moore algebra, and one uses freeness of the Eilenberg-
Moore algebra TX to obtain a canonical T -algebra homomorphism x] : (TX, µT )→
HT (TX, µT ). The coalgebraic language semantics of (X,x) is then given by X

ηX−−→
TX

x]†

−−→νHT , i.e. by composing the unique coalgebra morphism induced by x] with ηX .
This construction yields a functor T ′ : Coalg(HT ) → CoalgHT mapping coalgebras
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X
x−→ HTX to x] and homomorphisms f to Tf (see e.g. [12, Proof of Lemma 3.27]

for a proof).
Now our aim is to show that the LFF of HT characterizes precisely the coalgebraic

language semantics of all fp-carried HT -coalgebras. As the right adjoint U preserves
monos and is faithful, we know that HT preserves monos, and as T is finitary, filtered
colimits in CT are created by the forgetful functor to C, and we therefore see that HT is
finitary. Thus, by Theorem 3.8, ϑHT exists and is a subcoalgebra of νHT . By [37] and
[10, Corollary 3.4.19], we know that νHT is carried by νH equipped with a canonical
algebra structure.

Now let us turn to the desired characterization of ϑHT . Formally, the coalgebraic
language semantics of all fp-carried HT -coalgebras is collected by forming the colimit

k : K → HK of the diagram CoalgfgHT
T ′−→ CoalgHT U−→ CoalgH. This coalgebra

K is not yet a subcoalgebra of νH (for C = Set that means, not all behaviourally
equivalent states are identified in K), but taking its image in νH we obtain the LFF:

Proposition 4.3. The image (I, i) of the unique coalgebra morphism k† : K → νHT

is precisely the locally finite fixpoint of the lifting HT .

One can also directly take the union of all desired behaviours, for C = Set:

Theorem 4.4. The locally finite fixpoint of the liftingHT comprises precisely the images
of determinized HT -coalgebras:

ϑHT =
⋃

x:X→HTX
X finite

x]†[TX] =
⋃

x:X→HTX
X finite

x]† · ηTX [X] ⊆ νHT . (1)

This result suggests that the locally finite fixpoint is the right object to consider in order
to represent finite behaviour. We now instantiate the general theory with examples from
the literature to characterize several well-known notions as LFF.

4.2 The Languages of Non-deterministic Automata

Let us start with a simple standard example. We already mentioned that non-deter-
ministic automata are coalgebras for the functor X 7→ 2 × Pf(X)Σ . Hence they are
HT -coalgebras for H = 2 × (−)Σ and T = Pf the finite powerset monad on Set.
The above generalized powerset construction then instantiates as the usual powerset
construction that assigns to a given non-deterministic automaton its determinization.

Now note that the final coalgebra for H is carried by the set L = P(Σ∗) of all
formal languages over Σ with the coalgebra structure given by o : L → 2 with o(L) = 1
iff L contains the empty word and t : L → LΣ with t(L)(s) = {w | sw ∈ L} the left
language derivative. The functor H has a canonical lifting HT on the Eilenberg-Moore
category of Pf, viz. the category of join semi-lattices. The final coalgebra νHT is carried
by all formal languages with the join semi-lattice structure given by union and ∅ and
with the above coalgebra structure. Furthermore, the coalgebraic language semantics
of x : X → HTX assigns to every state of the non-deterministic automaton X the
language it accepts. Observe that join semi-lattices form a so-called locally finite variety,
i.e. the finitely presentable algebras are precisely the finite ones. Hence, Theorem 4.4
states that the LFF of HT is precisely the subcoalgebra of νHT formed by all languages
accepted by finite NFA, i.e. regular languages.
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Note that in this example the LFF and the rational fixpoint coincide since both fp
and fg join semi-lattices are simply the finite ones. Similar characterizations of the
coalgebraic language semantics of finite coalgebras follow from Theorem 4.4 in other
instances of the generalized powerset construction from [41] (cf. e.g. the treatment of
the behaviour of finite weighted automata in [12]).

We now turn to examples that, to the best of our knowledge, cannot be treated using
the rational fixpoint.

4.3 The Behaviour of Stack Machines

Push-down automata are finite state machines with infinitely many configurations. It
is well-known that deterministic and non-deterministic pushdown automata recognize
different classes of context-free languages. We will characterize both as instances of the
locally finite fixpoint, using the results from [23] on stack machines, which can push or
read multiple elements to or from the stack in a single transition, respectively.

That is, a transition of a stack machine in a certain state consists of reading an
input character, going to a successor state based on the stack’s topmost elements and of
modifying the topmost elements of the stack. These stack operations are captured by the
stack monad.

Definition 4.5 (Stack monad, [22, Proposition 5]). For a finite set of stack symbols
Γ , the stack monad is the submonad T of the store monad (− × Γ ∗)Γ∗ for which the
elements 〈r, t〉 of TX ⊆ (X×Γ ∗)Γ∗ ∼= XΓ∗ × (Γ ∗)Γ

∗
satisfy the following restriction:

there exists k depending on r, t such that for every w ∈ Γ k and u ∈ Γ ∗, r(wu) = r(w)
and t(wu) = t(w)u.
Note that the parameter k gives a bound on how may of the topmost stack cells the
machine can access in one step.

Using the stack monad, stack machines areHT -coalgebras, whereH = B×(−)Σ is
the Moore automata functor for the finite input alphabet Σ and the set B of all predicates
mapping (initial) stack configurations to output values from 2, taking only the topmost
k elements into account: B = {p ∈ 2Γ

∗ | ∃k ∈ N0 : ∀w, u ∈ Γ ∗, |w| ≥ k : p(wu) =
p(w)} ⊆ 2Γ

∗
.

The final coalgebra νH is carried by BΣ
∗

which is (modulo power laws) a set of
predicates, mapping stack configurations to formal languages. Goncharov et al. [23]
show that H lifts to SetT and conclude that finite-state HT -coalgebras match the
intuition of deterministic pushdown automata without spontaneous transitions. The
languages accepted by those automata are precisely the real-time deterministic context-
free languages; this notion goes back to Harrison and Havel [24]. We obtain the following,
with γ0 playing the role of an initial symbol on the stack:

Theorem 4.6. The locally finite fixpoint ofHT is carried by the set of all maps f ∈ BΣ∗

such that for any fixed γ0 ∈ Γ , {w ∈ Σ∗ | f(w)(γ0) = 1} is a real-time deterministic
context-free language.

Proof. By [23, Theorem 5.5], a language L is a real-time deterministic context-free
language iff there exists some x : X → HTX , X finite, with its determinization
x] : TX → HTX and there exist s ∈ X and γ0 ∈ Γ such that f = x]† · ηTX(s) ∈ BΣ∗

and f(w)(γ0) = 1 for all w ∈ Σ∗. The rest follows by (1). ut
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Just as for pushdown automata, the expressiveness of stack machines increases when
equipping them with non-determinism. Technically, this is done by considering the
non-deterministic stack monad T ′, i.e. T ′ denotes a submonad of the non-deterministic
store monad Pf(− × Γ ∗)Γ

∗
, as described in [23, Section 6]. In the non-deterministic

setting, a similar property holds, namely that the determinized HT ′-coalgebras with
finite carrier describe precisely the context-free languages [23, Theorem 6.5]. Combine
this with (1):

Theorem 4.7. The locally finite fixpoint of HT ′ is carried by the set of all maps f ∈
BΣ

∗
such that for any fixed γ0 ∈ Γ , {w ∈ Σ∗ | f(w)(γ0) = 1} is a context-free

language.

4.4 Context-Free Languages and Constructively S-Algebraic Power Series

One generalizes from formal (resp. context-free) languages to weighted formal (resp.
context-free) languages by assigning to each word a weight from a fixed semiring. More
formally, a weighted language – a.k.a. formal power series – over an input alphabet X is
defined as a map X∗ → S, where S is a semiring. The set of all formal power series is
denoted by S〈〈X〉〉. Ordinary formal languages are formal power series over the boolean
semiring B = {0, 1}, i.e. maps X∗ → {0, 1}.

An important class of formal power series is that of constructively S-algebraic
formal power series. We show that this class arises precisely as the LFF of the standard
functor for deterministic Moore automata H = S × (−)Σ , but on an Eilenberg-Moore
category of a Set monad. As a special case, constructively B-algebraic series are the
context-free weighted languages and are precisely the LFF of the automata functor in
the category of idempotent semirings.

The original definition of constructively S-algebraic formal power series goes back
to Fliess [19], see also [17]. Here, we use the equivalent coalgebraic characterization by
Winter et al. [44].

Let S〈X〉 ⊆ S〈〈X〉〉 the subset of those maps, that are 0 for all but finitely many
w ∈ X∗. If S is commutative, then S〈−〉 yields a finitary monad and thus also T =
S〈− + Σ〉 by Example 4.1. The algebras for S〈−〉 are associative S-algebras (over
the commutative semiring S), i.e. S-modules together with a monoid structure that is a
module morphism in both arguments. The algebras for T are Σ-pointed S-algebras. The
following notions are special instances of S-algebras.

Example 4.8. For S = B = {0, 1}, one obtains idempotent semirings as B-algebras, for
S = N semirings, and for S = Z ordinary rings.

Winter et al. [44, Proposition 4] show that the final H-coalgebra is carried by S〈〈Σ〉〉
and that constructively S-algebraic series are precisely those elements of S〈〈Σ〉〉 that arise
as the behaviours of those coalgebra c : X → HS〈X〉 with finite X , after determinizing
them to some c] : S〈X〉 → HS〈X〉 (see [44, Theorem 23]).

However, this determinization is not directly an instance of the generalized powerset
construction. We shall show that the same behaviours can be obtained by using the
standard generalized powerset construction with an appropriate lifting ofH to T -algebras.
Having an S-algebra structure on A and a Σ-pointing j : Σ → A we need to define
another S-algebra structure and Σ-pointing on HA = S × AΣ . While the S-module
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structure is just point-wise, we need to take care when multiplying two elements from
HA. To this end we first we define the operation [−,−] : S ×AΣ → A by

[o, δ] := i(o) +
∑
b∈Σ

(
j(b) · δ(b)

)
,

where i : S → A is the canonical map with i(s) = s · 1 with 1 the neutral element of
the monoid on A. The idea is that [o, δ] acts like a state with output o and derivation δ.
The multiplication on HA = S ×AΣ is then defined by

(o1, δ1) ∗ (o2, δ2) :=
(
o1 · o2, a 7→ δ1(a) · [o2, δ2] + i(o1) · δ2(a)

)
. (2)

The Σ-pointing is the obvious: a 7→ (0, %a) where %a(a) = 1 and %a(b) = 0 for a 6= b.

Lemma 4.9. For any w ∈ A in SetT and any HT -coalgebra structure c : A→ HTA,
w and [c(w)] are behaviourally equivalent in Set.

Given a coalgebra c : X → HS〈X〉, Winter et al. [44, Proposition 14] determinize c to
some ĉ = 〈ô, δ̂〉 : S〈X〉 → HS〈X〉 with the property that for any v, w ∈ S〈X〉,

ô(v ∗ w) = ô(v) · ô(w) and δ̂(v ∗ w, a) = δ̂(v, a) ∗ w + ô(v) ∗ δ̂(w, a), (3)

and such that ĉ is a S-module homomorphism. However, the generalized powerset
construction w.r.t. T yields a coalgebra c] : S〈X + Σ〉 → HS〈X + Σ〉. The above
property, together with Lemma 4.9 and (2) implies that ĉ and c] are essentially the same
coalgebra structures:

Lemma 4.10. In Set, u ∈ (S〈X〉, ĉ) and S〈inl〉(u) ∈ (S〈X+Σ〉, c]) are behaviourally
equivalent.

It follows that ĉ† = c]† · S〈inl〉 and thus their images in νH are identical. Hence, a
formal power series is constructively S-algebraic iff it is in the image of some c]† ·S〈inl〉,
and by (1), iff it is in the locally finite fixpoint of HT .

+

z +

×
? z

+

×
? ×
? z

...

Fig. 1. Solution of
ϕ(z) = z + ϕ(?× z)

4.5 Courcelle’s Algebraic Trees

For a fixed signature Σ of so called givens, a recursive pro-
gram scheme (or rps, for short) contains mutually recursive
definitions of new operations ϕ1, . . . , ϕk (with respective arities
n1, . . . , nk). The recursive definition of ϕi may involve symbols
from Σ, operations ϕ1, . . . , ϕk and ni variables x1, . . . , xni

.
The (uninterpreted) solution of an rps is obtained by unravelling
these recursive definitions, producing a possibly infinite Σ-tree
over x1, . . . , xni

for each operation ϕi. Figure 1 shows an rps
over the signature Σ = {?/0,×/2,+/2} and its solution. In gen-
eral, an algebraic Σ-tree is a Σ-tree which is definable by an
rps over Σ (see Courcelle [16]). Generalizing from a signature to a finitary endofunctor
H : C → C on an lfp category, Adámek et al. [7] describe an rps as a coalgebra for
a functor Hf on H/Mndf(C), in which objects are finitary H-pointed monads on C,
i.e. finitary monads M together with a natural transformation H →M . They introduce
the context-free monad CH of H , which is an H-pointed monad that is a subcoalgebra
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of the final coalgebra for Hf and which is the monad of Courcelle’s algebraic Σ-trees in
the special case where C = Set and H is a polynomial functor associated to a signature
Σ. We will prove that this monad is the LFF of Hf, and thereby we characterize it by a
universal property – solving the open problem in [7].

The setting is again an instance of the generalized powerset construction, but this
time with Funf(C) as the base category in lieu of Set. Let C be an lfp category in which
the coproduct injections are monic and consider a finitary, mono-preserving endofunctor
H : C → C. Denote by Funf(C) the category of finitary endofunctors on C. Then H
induces an endofunctorH ·(−)+ Id on Funf(C), denoted Ḣ and mapping an endofunctor
V to the functor X 7→ HVX +X . This functor Ḣ gets precomposed with a monad on
Funf(C) as we now explain.

Proposition 4.11 (Free monad, [5, 9]). For a finitary endofunctor H , free H-algebras
ϕX : HFHX → FHX exist for all X ∈ C. FH itself is a finitary monad on C, more
specifically it is the free monad on H .

For example, if H is a polynomial functor associated to a signature Σ, then FHX
is the usual term algebra that contains all finite Σ-trees over the set of generators X .
Proposition 4.11 implies that H 7→ FH is the object assignment of a monad on Funf(C).
The Eilenberg-Moore category of F (−) is easily seen to be Mndf(C), the category of
finitary monads on C. Here, fp and fg objects differ, see [45, Section 5.4.1] for a proof.

Similarly as in the case of context-free languages, we will work with the monad
E(−) = FH+(−), so we get H-pointed finitary monads as the E(−)-algebras. This
category is equivalent to a slice category: the universal property induced by F (−) states,
that for any finitary monad B the natural transformations H → B are in one-to-one
correspondence with monad morphisms FH → B; so the category H/Mndf(C) of
finitary H-pointed monads on C is isomorphic to the slice category FH/Mndf(C). This
finishes the description of the base category and we now lift the functor Ḣ to this
category.

Consider an H-pointed monad (B, β : H → C) ∈ H/Mndf(C). By [21], the
endofunctor H ·B + Id carries a canonical monad structure. Furthermore, we have an
obvious pointing inl · HηB : H → H · B + Id. By [33], this defines an endofunctor
on H-pointed monads, Hf : H/Mndf(C) → H/Mndf(C), which is a lifting of Ḣ . In
order to verify that Hf is finitary, we first need to know how filtered colimits look in
H/Mndf(C).
Lemma 4.12. The forgetful U : Mndf(C)→ Funf(C) creates filtered colimits.
Clearly, the canonical projection functor H/Mndf(C)→ Mndf(C) creates filtered colim-
its, too. Therefore, filtered colimits in the slice category H/Mndf(C) are formed on the
level of Funf(C), i.e. object-wise. The functor Ḣ is finitary on Funf(C) and thus also its
lifting Hf is finitary. So all requirements from Assumption 3.1 are met: we have a finitary
endofunctor Hf on the lfp category H/Mndf(C), and by [7, Corollary 2.20] Hf preserves
monos since H does. By Theorem 3.8, Hf has a locally finite fixpoint.
Remark 4.13. The final Hf-coalgebra is not of much interest, but that of a related functor.
Hf generalizes to a functor H : H/Mndc(C) → H/Mndc(C) on H-pointed countably
accessible3 monads. For any object X ∈ C, the finitary endofunctor H(−) +X has a

3 A colimit is countably filtered if its diagram has for every countable subcategory a cocone. A
functor is countably accessible if it preserves countably filtered colimits.
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final coalgebra; call the carrier TX . Then T is a monad [1], is countably accessible [7]
and is the final H -coalgebra [33].
Adámek et al. [7] characterize a (guarded) recursive program scheme as a natural
transformation V → H · EV + Id with V fp (in Funf(C)), or equivalently, via the
generalized powerset construction w.r.t. the monad E(−) as an Hf-coalgebra on the
carrier EV (in Mndf(C)). These Hf-coalgebras on carriers EV where V ∈ Funf(C)
is fp form the full subcategory EQ ⊆ CoalgHf. They show two equivalent ways of
constructing the monad of Courcelle’s algebraic trees for the case C = Set: as the image
of colimEQ in the final coalgebra T of Remark 4.13, and as the colimit of EQ2, where
EQ2 is the closure of EQ under strong quotients. We now provide a third characterization,
and show that the monad of Courcelle’s algebraic trees is the locally finite fixpoint of Hf.

To this end it suffices to show that EQ2 is precisely the diagram of Hf-coalgebras with
an fg carrier. This is established with the help of the following two technical lemmas.
We now assume that C = Set.
Lemma 4.14. Hf maps strong epis to morphisms carried by strong epi natural transfor-
mations.

We have the following variation of Proposition 3.21:

Lemma 4.15. Any Hf-coalgebra b : (B, β) → Hf(B, β), with B fg, is the strong quo-
tient of a coalgebra from EQ.

The proof of Lemma 4.15 makes use of Lemma 4.14 as well as the following properties:
– The fp objects in Funf(Set) are the quotients of polynomial functors.
– The polynomial functors are projective. That means that for a polynomial functor P

and any natural transformation n : K → L with surjective components we have the
following property: for every f : P → L there exists f ′ : P → K with n · f ′ = f .

– Any fg object in H/Mndf(Set) is the quotient of some EV with V fp in Funf(Set)
and thus also of some EP with P a polynomial functor.

Note that the last property holds because H/Mndf(Set) is an Eilenberg-Moore cat-
egory and EV is the free Eilenberg-Moore algebra on the fp object V . It follows
from Lemma 4.15 that CoalgfgHf is the same category as EQ2; thus their colimits in
CoalgHf are isomorphic and we conclude:

Theorem 4.16. The locally finite fixpoint of Hf : HΣ/Mndf(Set)→ HΣ/Mndf(Set) is
the monad of Courcelle’s algebraic trees, sending a set to the algebraic Σ-trees over it.

5 Conclusions and Future Work
We have introduced the locally finite fixpoint of a finitary mono-preserving endofunc-
tor on an lfp category. We proved that this fixpoint is characterized by two universal
properties: it is the final lfg coalgebra and the initial fg-iterative algebra for the given
endofunctor. And we have seen many instances where the LFF is the domain of behaviour
of finite-state and finite-equation systems. In particular all previously known instances
of the rational fixpoint are also instances of the LFF, and we have obtained a number of
interesting further instances not captured by the rational fixpoint.

On a more technical level, the LFF solves a problem that sometimes makes the
rational fixpoint hard to apply. The latter identifies behaviourally equivalent states (i.e. is
a subcoalgebra of the final coalgebra) if the classes of fp and fg objects coincide. This
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condition, however, may be false or unknown (and sometimes non-trivial to establish) in
a given lfp category. But the LFF always identifies behaviourally equivalent states.

There are a number of interesting topics for future work concerning the LFF. First, it
should be interesting to obtain further instances of the LFF, e.g. analyzing the behaviour
of tape machines [23] may perhaps lead to a description of the recursively enumerable
languages by the LFF. Second, syntactic descriptions of the LFF are of interest. In works
such as [42, 40, 12, 35] Kleene type theorems and axiomatizations of the behaviour of
finite systems are studied. Completeness of an axiomatization is then established by
proving that expressions modulo axioms form the rational fixpoint. It is an interesting
question whether the theory of the LFF we presented here may be of help as a tool for
syntactic descriptions and axiomatizations of further system types.

As we have mentioned already the rational fixpoint is the starting point for the
coalgebraic study of iterative and iteration theories. A similar path could be followed
based on the LFF and this should lead to new coalgebraic iteration/recursion principles,
in particular in instances such as context-free languages or constructively S-algebraic
formal power series.

Another approach to more powerful recursive definition principles are abstract
operational rules (see [27] for an overview). It has been shown that certain rule formats
define operations on the rational fixpoint [13, 32], and it should be investigated whether
a similar theory can be developed based on the LFF.

Finally, in the special setting of Eilenberg-Moore categories one could base the study
of finite systems on free finitely generated algebras (rather than all fp or all fg algebras).
Does this give a third fixpoint capturing behaviour of finite state systems with side effects
besides the rational fixpoint and the LFF? And what is then the relation between the three
fixpoints? Also the parallelism in the technical development between rational fixpoint
and LFF indicates that there should be a general theory that is parametric in a class of
“finite objects” and that allows to obtain results about the rational fixpoint, the LFF and
other possible “finite behaviour domains” as instances.
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1. Aczel, P., Adámek, J., Milius, S., Velebil, J.: Infinite trees and completely iterative theories: A
coalgebraic view. Theoret. Comput. Sci. 300, 1–45 (2003)
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4. Adámek, J., Milius, S., Velebil, J.: Elgot theories: a new perspective of the equational proper-
ties of iteration. Math. Structures Comput. Sci. 21(2), 417–480 (2011)
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A Omitted Proofs and Results

Technical Lemmas for Proposition 3.4

We first show directed unions of fg-carried coalgebras are lfg.

Lemma A.1. Every directed union of coalgebras from CoalgfgH is an lfg coalgebra.

Proof. Let D : (I,≤) → CoalgH, (Di, di) := Di be a directed diagram of coal-
gebras from CoalgfgH and of mono-carried morphisms. Name the colimit cocone
ci : (Di, di) → (A, a) in CoalgH . To check Definition 3.2, let S be a finitely gen-
erated object with f : S → A in C. As colimits in CoalgH are created by the forgetful
functor U : CoalgH → C, and because U ·D is a directed diagram of monos and S is
an fg object, we obtain some factorization as shown below:

S U(A, a) = A

UDi = Di

f

f ′ Uci

Note that because U creates the colimits, we know that the colimit injection for UDi in
C is precisely Uci. ut

Next follow two easy technical lemmas on directed colimits.

Lemma A.2. For a directed diagram D : D → C of subobjects mi : Ci � C of
C, the colimit (di : Ci → colimD)i∈D is obtained by taking the (strong epi,mono)-

factorization of
∐
Ci

[mi]−−−→ C.

Proof. At first, the (mi)i∈D form a cocone, so we have a uniquem : colimD → C with
m · di = mi, and di is monic. As C is lfp and both di and mi are monic, [8, Proposition
1.62 (ii)] gives us that m is monic, too. The copair of a family of jointly strongly epic
family [di] :

∐
Ci → colimD is a strong epi and therefore we have the factorization:∐

Ci C

colimD

[mi]

[di]
m

ut

Lemma A.3. Images of colimits in CoalgH are directed unions of images. More pre-
cisely, for a diagram D : D → CoalgH , given a colimit cocone (ci : Di→ C)i∈D and
a morphism f : C → B, define Ai as Im(f · ci). Then Im(f) is the directed union of the
Ai together with the induced monomorphisms:

Di Ai

C Im(f) B

ei

ci
di

mi

e

f

e m

(4)
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Proof. As colimits in CoalgH are created by the forgetful functor U : CoalgH → C, we
consider only the objects first. Take the (strong epi-carried,mono-carried)-factorizations
f · ci = mi · ei for each i ∈ D, and f = m · e. Then (4) where di is induced by the
strong epi ei. Notice that by m · di = mi, di is a mono as well. For any morphism
g : Di→ Dj we get a mono in ḡ : Ai � Aj by the strong epi ei:

Di Ai

Dj Aj Im(f)

ei

g
di

ḡ

ej

dj

By dj · ḡ = di, we know that ḡ is a mono as well. The di also ensure that between each
pair of objects Ai, Aj there is at most one morphism. With this relation to the Di, we
also inherit the existence of upper bounds in Ai, which can be summarized in: the Ai
form a directed diagram of monos in C, i.e. a directed union in CoalgH .

To see that Im(f) is indeed its colimit, consider∐
iDi C

∐
Ai Im(f)

[ci]

∐
ei e

[di]

which commutes, because (4) did for every i ∈ D. The copair of strong epis [ci] itself is
a strong epi and so e · [ci] and [di] ·

∐
ei as well. So [di] is a strong epi and [mi] factors

into m and [di], and by Lemma A.2 Im(f), is the colimit.

∐
Ai Im(f) B

[di]

[mi]

m ut

Proof of Proposition 3.4

Proof. Let ci : (Xi, xi)→ (X,x) be a colimit cocone of a filtered diagram with (Xi, xi)
from CoalgfgH . Take the (strong epi,mono)-factorizations

ci ≡ ( Xi Ti X
ei mi )

to get the subcoalgebras (Ti, ti) of (X,x). By Lemma A.3 with f = idX : X → X ,
Im(f) = X is the directed union of the Ti. These Ti are in CoalgfgH since strong
quotients of finitely generated objects are finitely generated. This diagram of the Ti
is a directed union with colimit (X,x), both in B and in CoalgH , so according to
Lemma A.1, (X,x) is lfg.

Proof of Proposition 3.7

Proof. The direction from left to right is clear, as Coalgfg ⊆ Coalglfg. For the other
one, let (S, s) be some lfg coalgebra. By Proposition 3.5, it is the directed union of all
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its subcoalgebras with finitely generated carrier. For each subcoalgebra inp : (P, p)→
(S, s), there is a unique homomorphism p† : (P, p)→ (L, `). By the uniqueness of p†

it follows that L together with the p† is a cocone. Hence there is a unique morphism
∃!u : (S, s) → (L, `) with u · inp = p† for each appropriate (P, p). For any other
morphism ū : (S, s)→ (L, `) the equation ū · inp = p† must hold as well, because p† is
unique. As the inp are jointly epic, one gets ū = u. ut

Proof of Lemma 3.9

Proof. Consider some strong quotient q : (X,x)→ (Y, y) where (X,x) is lfg. As (X,x)
is the directed colimit of its subcoalgebras with fg carrier, we have that (Y, y) – the
codomain of the strong epi-carried q – is the union of the images of these subcoalgebras
by Lemma A.3. The images themselves have a finitely generated carrier – more precisely
the factorization in CoalgH exist becauseH preserves monos, by factorization. So (Y, y)
is the union of these images and thus is lfg. ut

Technical Lemmas for Proposition 3.16

The first task is to show that ē is lfg. So essentially for each f : S → X + ϑH
where f is fg we have to find a coalgebra through which f factors, as required by
Definition 3.2. Roughly this is done in two steps: firstly we construct the fg image of e
in ϑH , secondly the fg image of f in ϑH , for the union P of these images, we construct
a coalgebra structure on X + P through which f factors. In order to get this kind of
image factorization of f and e from the property of X being finitely generated, ϑH has
to be expressed as a directed colimit of monos. This is done with the following lemmas
before going into the detail of the proof of the theorem.

Lemma A.4. Let Coalg′fg be the full subdiagram of Coalgfg consisting of those coal-
gebras (A, a) where a† : A → ϑH is a monomorphism. Then the forgetful functor
U ′ : Coalg′fg → C is a directed diagram of monos and filtered.

Proof. At first, let us show that

for (A, a) in Coalgfg there exists (A′, a′) in Coalg′fg with h : (A, a)→ (A′, a′). (5)

This follows directly from the (strong epi,mono) factorization which lifts from C to
Coalgfg. So a† : A → ϑH factors into h : A � A′ and a′† : A′ � ϑH . The
strong epi h induces the structure a′ : A′ → HA′ and proves that both h and a′† are
coalgebra homomorphisms. For the existence of upper bounds, which is required by
the directedness, observe that coproducts exists in Coalgfg, inducing upper bounds in
Coalg′fg by (5).

For any homomorphisms g, h : (A1, a1)→ (A2, a2) we have a†2 · g = a†1 = a†2 · h.
As a†2 is monic, g = h, i.e. there is at most one arrow in each hom set of Coalg′fg, which
means that U ′ is essentially small, a poset, and thus directed. As a†1 is a mono, h is a
mono as well, so U ′ is a directed diagram of monos. ut
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Lemma A.5. ϑH is the colimit of U ′ : Coalg′fgH → C.

Proof. As (5) proves, the inclusion functor V : Coalg′fgH → CoalgfgH is a cofinal
subdiagram. ϑH is the colimit of the forgetful functor U : CoalgfgH → C, so colimU =
colimUV = colimU ′. ut

Proof of Proposition 3.16

Proof. Let e : X → HX + ϑH be an equation morphism with X fg. In the following
we prove that e has a unique solution in ϑH . The codomain HX + ϑH is the colimit of
the following directed diagram of monos:

– The diagram scheme D is the product category containing pairs (T
t
� HX,V

v→
HV ) consisting of an fg subobject of HX and (V, v) ∈ Coalg′fgH . D is directed,
because both the fg subobjects of HX and Coalg′fgH are.

– The diagram D : D → C is defined by

D(t, v) = Im(t+ v† : T + V → HX + ϑH)

on objects and by diagonalizaton on morphisms. By mono laws, all connecting
morphisms are monic.

ThatHX+ϑH is indeed the colimit ofD follows from Lemma A.3 applied with f = id.
Because X is fg, the morphism e factors through one of the colimit injections, i.e. we
obtain an m : W � HX + ϑH , W fg, and e such that m · e′ = e. Furthermore, choose
some t : T � HX and v : V → HV from D such that W = D(t, v) as shown in the
diagram below:

X HX + ϑH

W

T + V

e

e′
m

[eT ,eV ]

t+v†

Since T + V is fg, so is its strong quotient W . The intermediate object W carries a
coalgebra structure by diagonalization:

HX + ϑH H(HX + ϑH)

W HW

T + V HX +HV

[He,H inr·`]

m Hm

[eT ,eV ]

t+v

t+v†

[H
e
,H

in
r·
H
v
†
]

[He′,HeV ]

The inner square commutes on the left component trivially, and on the right component
because v† is a H-coalgebra homomorphism, and the two triangles by the previous
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diagram. This induces a morphism w : W → HW making m and eV coalgebra
homomorphisms. Since m is independent of the choice of t and v and since Hm is
monic, w is independent of the choice of t and v. We have the following commuting
diagram:

W HX + ϑH HW +HϑH

T + V HX +HV HW +HW

W

HW HϑH

ϑH

m He′+`

v† coalgebra
homomorphism finality

of ϑH

[Hw†, HϑH]

[eT ,eV ]

[eT ,eV ]

t+
v
†

t+v

Definition of w

He
′+H

v
†

He′+HeV

[He′,HeV ]

H
W

+
H
w
†

[Hw†,Hw†]

w

w†

Hw†

w† coalgebra
homomorphism

`−1

Since [eT , eV ] is an epimorphism, we therefore have

w† = `−1 · [Hw† ·He′, `] ·m = [`−1 ·Hw† ·He′, idϑH ] ·m

and so w† · e′ is a solution of e in (ϑH, `−1):

X W ϑH

HX + ϑH HW + ϑH HϑH + ϑH

e′

e
m

w†

He′+ϑH Hw†+ϑH

[`−1,ϑH]

To verify that this solution is unique, let s : X → ϑH be any solution of e, i.e. we have

s = [`−1 ·Hs, idϑH ] · e. (6)

This defines a coalgebra homomorphism from (W,w) to ϑH:

W HX + ϑH ϑH

HW H(HX + ϑH) HϑH

m

w
Definition

of w

[`−1·Hs,ϑH]

[He,H inr·`]
[Hs,`](6) `

Hm H[`−1·Hs,ϑH]

Hence [`−1 ·Hs, idϑH ] ·m = w† and so

w† · e′ = [`−1 ·Hs, idϑH ] ·m · e′ = [`−1 ·Hs, idϑH ] · e,= s

which completes the proof. ut
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Technical Lemma for Theorem 3.17

Lemma A.6. For an fg-iterative algebra (A,α : HA→ A) and a coalgebra e : X →
HX from Coalgfg there is a unique C-morphism ue : X → A such that ue = α ·Hue · e.

X A

HX HA

∃!ue

e

Hue

	 α

Proof. Consider the equation morphism inl · e : X → HX + A. For an arbitrary
morphism s : X → A, consider the following diagram:

X A

HX HX +A HA+A

HA

s

e

inl

Hs

Hs+A

[α,A]

	 inl

α	

The lower part and the right-hand part always commute. But for the commutativity of
the whole diagram consider the following sequence of equivalences:

s is a solution of inl · e in A.
⇔ The upper square commutes.
⇔ s = [α, idA] · inl ·Hs · e
⇔ s = α ·Hs · e

So by the existence and the uniqueness of a solution of inl · e in the fg-iterative algebra
A, we get the desired morphism ue : X → A with ue = α ·Hue · e and its uniqueness,
by reading the equivalences from top or from bottom respectively. ut

Proof of Theorem 3.17

Proof. By Proposition 3.5, e : X → HX is the union of the diagram D of its subcoalge-
bras s : S → HS with S finitely generated. Denote the corresponding colimit injections
by ins : (S, s)→ (X, e). Each such s induces a unique morphism us : S → A with

us = α ·Hus · s. (7)

For any coalgebra homomorphism h : (R, r)→ (S, s) in Coalgfg the diagram

R S A

HR HS HA

h

r

us

s

Hh Hus

α
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commutes, because h is a coalgebra homomorphism and because of the property of us.
So ur = us · h. In other words, A together with the morphisms (us : S → A)s:S→HS lfg
form a cocone for D in C. This induces a unique morphism ue : X → A.

For each s : S → HS, ins : S → X is a coalgebra homomorphism. Furthermore,
we have is us = ue · ins in C by the universal property of X . So every part except
possibly (ii) of the diagram

S X A

HS HX HA

ins

s

us

	

(i)	 e

ue

(ii)

H ins

Hus

	
Hue

α

commutes, as indicated. In particular the outer square square commutes which gives

α ·Hue · e · ins = ue · ins for every fg subcoalgebra (S, s) of (X, e).

As the colimit injections ins are jointly epic, (ii) commutes.
Conversely every C-morphism ũe : X → A making (ii) commute, makes the bigger

square (i)+(ii) commute and defines a family of morphisms ũe · ins : S → A having the
property (7) each. So by the uniqueness of the us : S → A, we get us = ũe · ins. Using
again that the ins are jointly epic, reduces the equation

ue · ins = us = ũe · ins

to the desired uniqueness of ue, namely ue = ũe. ut

Proof of Proposition 3.21

Proof. Take a coalgebra (X,x) with finitely generated carrier, which is the strong
quotient of some fp object X ′ via q : X ′ � X . By assumption, X ′ is the strong
quotient of a projective fp object X ′′ via q′ : X ′′ → X ′. As H preserves strong epis, the
projectivity of X ′′ induces the coalgebra structure x′′:

X ′′ HX ′′

X ′ HX ′

X HX

x′′

q′ Hq′

q Hq

x

ut
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Proof of Proposition 4.3

Proof. First of all, (ϑHT , `) is final for all (TX, x]), with X finite, so it is a competing
cocone for (K, k):

(TX, x]) (K, k) (I, i)

(UϑHT , U`) (νH, τ)

inX

Ux]†
w

e
k†

m

n

Hence, w is induced making the triangle commute. Any (G, g) in CoalgfgH
T is the

quotient of some (TX, x]). And on the other hand, the g† : (G, g) → (ϑHT , `) are
jointly epic. Hence, the x]† are jointly epic as well, and so the Ux]†, too. Hence also w is
epic, and – as we are in Set – even a strong epimorphism. In other words, (UϑHT , U`)
is the (unique) image of (K, k) in (νH, τ). ut

Proof of Theorem 4.4

Proof. Combining the previous Proposition 4.3 together with the Lemma A.3 proves the
first equality. For the second equality, consider any element t ∈ TX and define a new
coalgebra on X + 1 by

(Y, y) ≡
(
X + 1 HTX HT (X + 1)

[x,x](t)] HT inl )
.

Clearly, [idTX , t] : Y → X is a HT -coalgebra homomorphism, and t ∈ y]† ·ηTY [Y ]. ut

Definition of the Lifting of S × (−)Σ to S-algebras

The S〈−+Σ〉-algebra structure – S-module structure, monoid structure, Σ-pointing –
on S ×AΣ can be defined using the S〈−+Σ〉-structure on A as follows:

Structure Connective in S in AΣ

S-Module 0 0S a 7→ 0A
(o1, δ1) + (o2, δ2) o1 + o2 a 7→ δ1(a) + δ2(a)
s · (o1, δ1) s · o1 a 7→ s · δ1(a)

Monoid 1 1S a 7→ 0A
(o1, δ1) ∗ (o2, δ2) o1 · o2 a 7→ δ1(a) · [o2, δ2] + i(o1) · δ2(a)

Σ-pointing b ∈ Σ 0S b 7→ 1A, a 7→ 0A, b 6= a

The defined connectives only makes use of connectives from S (seen as a S-algebra) and
from the S-algebra A, so H maps any S〈−+Σ〉-algebra homomorphism h : A→ B
to again a homomorphism Hh : S × AΣ → S × BΣ . In total, we have a lifting
HT : SetT → SetT of H , as soon as we have checked the S-algebra axioms for
HA = S ×AΣ .
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S-algebra connective preserving [−] : S ×AΣ → A

In order to show that S ×AΣ is indeed an S-algebra, it comes handy to establish some
identities for [−] : S ×AΣ → A first, namely, that it preserves the proposed S-algebra
structure in the expected manner. It preserves the S-module connectives zero

[0S , a 7→ 0A] = i(0S) +
∑
b∈Σ

j(b) · 0A = 0A

addition,

[o1 + o2, a 7→ δ1(a) + δ2(a)]

= i(o1 + o2) +
∑
b∈Σ

(
j(b) · (δ1(a) + δ2(a))

)
= i(o1) + i(o2) +

∑
b∈Σ

(
j(b) · δ1(a)

)
+
∑
b∈Σ

(
j(b) · δ2(a))

)
= [o1, δ1] + [o2, δ2]

and scalar multiplication:

[s · o, a 7→ s · δ(a)] = i(s · o) +
∑
b∈Σ

(
j(b) · (s · δ(b))

)
= s · i(o) +

∑
b∈Σ

s ·
(
j(b) · δ(b)

)
= s ·

(
i(o) +

∑
b∈Σ

(
j(b) · δ(b)

))
= s · [o, δ]

The monoid connectives are preserved as well:

[1S , a 7→ 0A] = i(1S) +
∑
b∈Σ

j(b) · 0A = i(1S) = 1A

[o1, δ1] · [o2, δ2] =

(
i(o1) +

∑
b∈Σ

j(b) · δ1(b)

)
· [o2, δ2]

= i(o1) · [o2, δ2] +
∑
b∈Σ

j(b) · δ1(b) · [o2, δ2]

= i(o1) ·

(
i(o2) +

∑
b∈Σ

j(b) · δ2(b)

)
+
∑
b∈Σ

j(b) · δ1(b) · [o2, δ2]

= i(o1 · o2) +
∑
b∈Σ

j(b) · i(o1) · δ2(b) +
∑
b∈Σ

j(b) · δ1(b) · [o2, δ2]

= i(o1 · o2) +
∑
b∈Σ

j(b) ·
(
i(o1) · δ2(b) + δ1(b) · [o2, δ2]

)
=
[
o1 · o2, a 7→ i(o1) · δ2(a) + δ1(a) · [o2, δ2]

]
=
[
(o1, δ1) ∗ (o2, δ2)

]
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S-Algebra axioms

Firstly, note that (HA, 0,+, ·) fulfills all the S-Module axioms, because 0,+, · are
defined point-wise in A. Secondly, (HA, 1, ∗) is a monoid:

(1S , a 7→ 0A) ∗ (o, δ) =
(
1S · o, a 7→ 0A · [o, δ] + i(1S) · δ(a)

)
=
(
o, a 7→ δ(a)

)
(o, δ) ∗ (1S , a 7→ 0A) =

(
o · 1S , a 7→ δ(a) · [1S , a 7→ 0A] + i(o) · 0A

)
=
(
o, a 7→ δ(a) · 1A + 0A

)
= (o, δ)

(
(o1, δ1) ∗ (o2, δ2)

)
∗ (o3, δ3)

=
(
o1 · o2, a 7→ δ1(a) · [o2, δ2] + i(o1) · δ2(a)

)
∗ (o3, δ3)

=
(
o1 · o2 · o3, a 7→

(
δ1(a) · [o2, δ2] + i(o1) · δ2(a)

)
· [o3, δ3] + i(o1 · o2) · δ3(a)

)
=
(
o1 · o2 · o3, a 7→ δ1(a) · [o2, δ2] · [o3, δ3] + i(o1) · δ2(a) · [o3, δ3] + i(o1 · o2) · δ3(a)

)
=
(
o1 · o2 · o3, a 7→ δ1(a) ·

[
(o2, δ2) ∗ (o3, δ3)

]
+ i(o1) ·

(
δ2(a) · [o3, δ3] + i(o2) · δ3(a)

))
= (o1, δ1) ∗

(
o2 · o3, a 7→ δ2(a) · [o3, δ3] + i(o2) · δ3(a)

)
= (o1, δ1) ∗

(
(o2, δ2) ∗ (o3, δ3)

)
What remains is the bilinearity of ∗with respect to the S-Module structure. For bilinearity
of ∗ in the first argument, we use the very same properties in A:(

(o1, δ1) + (o2, δ2)
)
∗ (o3, δ3)

= (o1 + o2, a 7→ δ1(a) + δ2(a)) ∗ (o3, δ3)

=
(
(o1 + o2) · o3, a 7→ (δ1(a) + δ2(a)) · [o3, δ3] + i(o1 + o2) · δ3(a)

)
=
(
o1 · o3 + o2 · o3, a 7→ δ1(a) · [o3, δ3] + δ2(a) · [o3, δ3] + (i(o1) + i(o2)) · δ3(a)

)
= (o1, δ1) ∗ (o3, δ3) + (o2, δ2) ∗ (o3, δ3)

(
s · (o1, δ1)

)
∗ (o2, δ2) =

(
s · o1 · o2, a 7→ s · δ1(a) · [o2, δ2] + i(s · o1) · δ2(a)

)
=
(
s · o1 · o2, a 7→ s · (δ1(a) · [o2, δ2] + i(o1) · δ2(a))

)
= s ·

(
(o1, δ1) ∗ (o2, δ2)

)
(0S , a 7→ 0A) ∗ (o, δ) =

(
0S · o, a 7→ 0A · [o, δ] + i(0S) · δ(a)

)
=
(
0S · o, a 7→ 0A · [o, δ] + 0A · δ(a)

)
=
(
0S , a 7→ 0A

)
Finally, linearity in the second argument of ∗ using the identities for [−]:

(o1, δ1) ∗
(
(o2, δ2) + (o3, δ3)

)
= (o1 · (o2 + o3), a 7→ δ1(a) · [o2 + o3, a 7→ δ2(a) + δ3(a)] + i(o1) · (δ2(a) + δ3(a))

= (o1 · o2 + o1 · o3, a 7→ δ1(a) · [o2, δ2] + δ1(a) · [o3, δ3] + i(o1) · δ2(a) + i(o1) · δ3(a)

= (o1, δ1) ∗ (o2, δ2) + (o1, δ1) ∗ (o3, δ3)
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(o1, δ1) ∗
(
s · (o2, δ2)

)
= (o1, δ1) ∗ (s · o2, a 7→ s · δ2)

)
=
(
o1 · (s · o2), δ1(a) · [s · o2, a 7→ s · δ2(a)] + i(o1) · (s · δ2(a))

)
=
(
o1 · (s · o2), δ1(a) · (s · [o2, δ2]) + i(o1) · (s · δ2(a))

)
=
(
s · (o1 · o2), s · (δ1(a) · [o2, δ2]) + s · (i(o1) · δ2(a))

)
= s ·

(
(o1, δ1) ∗ (o2, δ2)

)
(o, δ) ∗ (0S , a 7→ 0A) =

(
o · 0S , a 7→ δ(a) · [0S , a 7→ 0A] + i(o) · 0A

)
=
(
o · 0S , a 7→ δ(a) · 0A + 0A

)
= (0S , a 7→ 0A)

So for any S-algebra A, S ×AΣ is an S-algebras too and hence [−] : S ×AΣ → A an
S-algebra homomorphism.

Proof of Lemma 4.9

Proof. In other words, let us prove that R = {([c(w)], w) | w ∈ A} is a bisimulation.
First, take c = 〈o, δ〉 in Set (not in SetT ) and note that the following holds for any b ∈ Σ
and v ∈ A (where %b : Σ → A with %b(b) = 1 and %b(a) = 0 for a 6= b):

c(j(b)) ∗ c(v) = (0S , %b) ∗ c(v) = (0S , %b) ∗
(
o(v), δ(v)

)
=
(
0S · o(v), a 7→ %b(a) · [c(v)] + i(0S) · δ(v)(a)

)
=
(
0S , a 7→ %b(a) · [c(v)]

)
The following shows that R is a bisimulation:

c([c(w)]) = c([o(w), δ(w)]) = c

(
i(o(w)) +

∑
b∈Σ

(
j(b) · δ(w)(b)

))
= c
(
i(o(w)︸︷︷︸
∈S

)
)

+
∑
b∈Σ

c
(
j(b)

)
∗ c
(
δ(w)(b)

)
= (o(w), a 7→ 0A) +

∑
b∈Σ

(
0S , a 7→ %b(a) · [c(δ(w)(b))]

)
= (o(w), a 7→ 0A) +

(
0S , a 7→

∑
b∈Σ

%b(a) · [c(δ(w)(b))]

)
= (o(w), a 7→ 0A) + (0S , a 7→ [c(δ(w)(a))])

= (o(w), a 7→ [c(δ(w)(a))])

This says that for any v ∈ A, o([c(v)]) = o(v) and for all a ∈ Σ

δ([c(v)])(a) = [c(δ(v)(a))] R δ(v)(a).

i.e. R is a bisimulation. ut
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Proof of Lemma 4.10

Proof (By induction on u w.r.t. the connectives of S-algebras). Put c] = 〈o], δ]〉.

– Base Case: For any x ∈ X , x ∈ S〈X〉 and x ∈ S〈X + Σ〉 are behaviourally
equivalent by construction of ĉ and c].

– Step “S-Module-Structure”: The definition of ĉ on S-Module connectives is point-
wise [44, Sect. 3], and thus identical to the definition of c].

– Step “Monoid-Structure”: The neutral element is mapped by ĉ to (1, a 7→ 0) [44,
Sect. 4], and this is identical to the definition c].
For polynomials v, w ∈ S〈X〉 and v′, w′ ∈ S〈X +Σ〉, assume that v ∼ v′,w ∼ w′
(with ∼ denoting behavioural equivalence). We have

ô(v ∗ w)
(3)
= ô(v) · ô(w)

IH
= o](v′) · o](w′) (2)

= o](v′ ∗ w′).

Note that final homomorphism ĉ† : S〈X〉 → νH preserves multiplication by [44,
Prop 15] and the final c]† as well, because it lives in SetT . So for any x ∼ x′ and
y ∼ y′, x, y,∈ S〈X〉, x′, y′ ∈ TX , we have:

ĉ†(x ∗ y) = ĉ†(x) ∗ ĉ†(y)
x∼x′
=
y∼y′

c]†(x′) ∗ c]†(y′) = c]†(x′ ∗ y′),

i.e. ∼ is a congruence for ∗ (and also for +). The hypothesis v ∼ v′ implies
δ̂(v, a) ∼ δ](v′, a). For a ∈ Σ,

δ̂(v ∗ w, a)
(3)
= δ̂(v, a) ∗ w + ô(v) ∗ δ̂(w, a)

IH∼ δ](v′, a) ∗ w′ + o](v) ∗ δ](w′, a)

Lemma 4.9∼ δ](v′, a) ∗ [o](w′), δ](w′)] + o](v) ∗ δ](w′, a)

(2)
= δ](v′ ∗ w′, a).

So v ∗ w ∼ v′ ∗ w′. ut

Proof of Lemma 4.12

Proof. Let D : D → Mndf(C), Di = (Mi, η
i, µi) be a filtered diagram. Take its colimit

M = colimD with injections ini : Mi →M in Funf(C) and define a monad unit by

η ≡
(
Id

ηi−→Mi
ini−→M

)
, for any i ∈ D.

Similarly, define the monad multiplication µ : MM → M as the unique natural
transformation with

MiMi Mi

MM M

µi

ini∗ini ini

µ

for any i ∈ D.
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The filteredness of D proves the independence of the choice of i: for any other candidate
j ∈ D choose an upper bound mi,k : Mi →Mk ←Mj : mj,k of Mi and Mj . Then we
have a commutative diagram

Mi

Id Mk M

Mj

inimi,k
ηi

ηj

ηk ink

mj,k
inj

The left-hand triangles commute because mi,k,mj,k are monad morphisms and the
right-hand triangles because mi,k,mj,k are connecting natural transformations of D and
the in the colimit injections.

Note that (MiMi)i∈D is a filtered diagram with colimit MM in Funf(C). Let us
check the monad laws:

– Unit laws: the diagrams

Mi MiMi Mi

MiM

M MM M

ini

ηiMi

Naturality
of ηi Miini

µi

Definition
of µ ini

Def. η iniM
ηiM

ηM µ

and

Mi MiMi Mi

MiM

M MM M

Miη
i

Miη

ini

µi

Miini

Definition
of µ ini

Def. η

iniM

Mη µ

commute. As the ini are jointly epic, (M,η, µ) fulfills the unit laws.
– Associativity:

MiMiMi MiMi

MMM MM

MM M

Mi Mi

µiMi

Miµ
i

in
i∗in

i∗in
i

µi

ini
∗ini

µM

Mµ µ

µ

µi

ini
∗ini in

i

The outside commutes, and by definition of µ also all inner parts (except possibly for
the middle square). As the ini ∗ ini ∗ ini are jointly epic, the middle square commutes
as well.
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By definition of η and µ, each ini : Mi →M is a monad morphism. In fact, η and µ are
the unique natural transformations making the diagrams (in the definition) commute,
i.e. are the unique monad structure on M such that ini is a monad morphism.

To see that (M,η, µ) is a colimiting cocone, consider another cocone ni : Mi → N
in Mndf(C). This induced a unique natural transformationm : M → N with ni = m·ini.
To see that m is also a monad morphism, use the jointly epicness of the ini:

m · η = m · ini · ηi = ni · ηi = ηN ,

Consider the following diagram:

MiMi Mi

MM M

NN N

µi

in
i∗in

i

n
i ∗n

i

ini

n
i

µ

m∗m ? m

µN

The outside commutes, because ni is a monad morphism. The outer triangles commute
on the level of Funf(C) and the upper part commutes because ini is a monad morphism.
Again, as the ini ∗ ini are jointly epic, the inner square commutes as well, hence m is a
monad morphism. ut

Proof of Lemma 4.14

Proof. Strong epis in slice categories are carried by strong epis, so consider a strong
epi q : A → B in Mndf(Set). Consider the (strong epi,mono)-factorizations of the
components in Funf:

M I N

q

e m

The factorization lifts further to Mndf(Set), i.e. we have factorized the monad morphism
q into an epi e and a mono m in Mndf(Set). As any strong epi is also extremal, we
get that m is an isomorphism. Hence q has epic components. All Set-functors preserve
(strong) epis, so HqX + Id is epic for any set X and so the natural transformation
Hq + Id as well.

Proof of Lemma 4.15

Proof. (B, β) is the strong quotient of a (FH+V , κ̂ · inl), which again is a quotient
of (FH+P , κ̂ · inl), where P a polynomial functor and therefore an epi-projective in
Funf(C).

(FH+P , κ̂ · inl) (FH+V , κ̂ · inl) (B, β) H (B, β)
qP

=:q

qV b
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This corresponds to a natural transformation b · q : P → HB+Id. As P is projective and
by Lemma 4.14 Hfq is epic as a natural transformation, we get a natural transformation
p : P → HFH+P + Id such that the diagram on the left below commutes:

P HFH+P + Id

HB + Id
b·q

p

Hq+Id ⇐⇒
(FH+P , κ̂ · inl) Hf(F

H+P , κ̂ · inl)

(B, β) Hf(B, β)

p̄

q Hq+Id

b

It follows that the coalgebra b is the strong quotient of the coalgebra p̄, which is a
coalgebra in EQ.
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