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Abstract. Recent approaches persist models in databases to overcome
performance and memory limitations of XMI. Among them, Connected
Data Objects (CDO) is a database-based model repository widely used
in Model Based Engineering by academia and industry. Model traver-
sal queries are intensively used in modelling scenarios and their perfor-
mance greatly impacts tools performance and user experience. In this
paper, we introduce the CDO-QT framework to transform model tra-
versal queries from Epsilon Object Language (EOL) into SQL queries
and execute them at CDO repositories. This way, model engineers can
define queries using domain concepts at performance similar to SQL. We
have evaluated CDO-QT executing a set of queries over repositories from
15 MB to 5 GB size. CDO-QT results in better performance and memory
consumption with respect to other approaches (Plain EMF, MDT OCL,
CDO-OCL).

Keywords: Model driven development - Query - Model persistence -
Eclipse modelling framework - Connected data objects - Large models

1 Introduction

Model Based Engineering (MBE) raises the abstraction level of software develop-
ment promising productivity increases and greatly improved quality of the code
and development process [11]. In this paradigm, models automate and guide the
development processes and engineers focus on domain concepts rather than on
implementation details.

Modelling scenarios in industry can be really complex [1], with large models
of size of 100 MB and beyond, and with millions of model elements. Engineers use
modelling tools for model transformation, validation or execution. Performance
might have adverse effect on development, which makes MBE adoption difficult
in industry. Among all the activities, model queries are intensively used. There-
fore the impact of query performance on tool performance and user experience is
significant [4]. In practise, model traversal queries are the most commonly used
type of queries [9]. These queries obtain all the instances of a specific type and
require traversing the entire model.
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The Eclipse Modelling Framework (EMF) is a mature framework widely used
by the industry and academia. By default, EMF models are persisted using XML
Metadata Interchange (XMI). XMI entails memory problems for models [9,15]
and requires to completely load them in-memory for model traversal queries.
EMF provides also a binary format which improves scalability of XMI, but it
also requires loading entire models. Alternative proposals to XMI for large mod-
els choose databases for persistence, overcoming limitations by partial loading
of models. Different back-end strategies have been proposed: noSQL databases
(e.g. Morsa, MongoDB, NeoEMF /Map, NeoEMF /Graph or EMF Fragments);
relational databases (e.g. Teneo); or several kinds of databases (e.g. CDO). Data-
bases improve significantly performance in model operation for large models. For
example, a database-based prototype introduced at [2] executes a model traver-
sal query (GraBaTs query) 20 times faster than XMI and requires 57 % of the
memory used by XMI.

Matureness and collaboration support makes Connected Data Objects
(CDO) [17] the most widely used model repository in academia and industry [8].
CDO provides support for model operation from Plain EMF and EMF-based
model query languages executed at client-side (e.g. MDT OCL or EMF query),
model query languages executed at server-side (CDO OCL) and persistence-
specific query languages (e.g. HQL and SQL). Persistence-specific languages
improve significantly model operation performance. For example, GraBaT's query
for CDO with H2 relational back-end for a model of almost 5 millon elements’
requires 6 seconds and 289 MB of memory usage from SQL, while in the best case
of model query languages, it requires 28 s using 525 MB. However, in model query
languages model engineers use domain specific concepts, while in persistence-
specific query languages engineers should be aware of the way information is
persisted and learn database specific concepts and languages. This increases
programming effort to get complex queries correct.

The main contribution of this paper is a framework (CDO-QT) that trans-
forms queries from a model query language (Epsilon Object Language [12]) to a
persistence specific query language (SQL) and executes them at a CDO repos-
itory. Generated queries are fully integrated with the versioning/branching of
CDO. This way, model engineers can define queries using domain concepts at
performance similar to SQL. CDO-QT is designed in a two-step transforma-
tion process to provide re-usability and extensibility. We evaluate performance
and memory usage of different model traversal queries using Plain EMF, MDT
OCL, CDO OCL, SQL and CDO-QT. We have executed the queries over ten
CDO repositories from 15.3 MB to 5 GB. Results show that CDO-QT is able to
execute all the queries faster and requiring less memory than the other solutions
(Plain EMF, MDT OCL and CDO-OCL).

The rest of the paper is organized as follows: Sect.2 introduces CDO and
describes the motivation of this work. Section 3 describes the query transforma-
tion process performed by CDO-QT. In Sect. 4 we evaluate CDO-QT comparing
performance and memory usage for executing different model traversal queries

! More details about the evaluation scenario and metrics in Sect. 4.
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Fig. 1. Simplified CDO architec-
ture for relational backends.

and using different model query languages. This paper concludes with related
work and conclusions in Sects. 5 and 6.

2 Operation with CDO Repositories

CDO provides transparent persistence of models in all kinds of back-end strategies,
with load on demand mechanisms and caching policies to operate persisted models.
CDO supports features such as: multi-user access, off-line collaboration, model-
level locking, branching and versioning. Figure 1 illustrates the client /server archi-
tecture of CDO. CDO Server interacts with the database back-end through an
IStore implementation. DBStore is the most mature and complete?, and in prac-
tice mainly relational back-ends are used with CDO [3]. For relational back-ends,
CDO provides a common data-schema with dedicated tables for change history,
branches, commits or user access; additionally it generates automatically one data-
schema for each different domain-metamodel.

EMF-based applications (editors, querying utilities, transformations, etc.)
can operate with CDO repositories. For this purpose, CDO Client provides a
custom extension of EMFs Resource (CDOResource) and EObjects (CDOODb-
jects). Elements of the model are loaded in memory to operate them. CDO
Client can also communicate with a server side query manager. CDO provides
support for OCL queries (OCLQueryHandler) and SQL (SQLQueryHandler).
Table 1 shows execution time and memory usage results for the GraBats case
study [16] using Plain EMF, OCL, CDO-OCL and SQL on five CDO repositories
with H2 relational database (Set0—4)3. Best results are obtained when operating
from server-side query manager. In particular, CDOs’ SQL query handler sig-
nificantly improves performance of operation. However, the programming effort
for model engineers to get complex queries right in SQL can be high, and they
should be aware of database schema and persistence related issues.

2 Comparison of CDO stores: http://goo.gl/cEemcL.
3 For extended information about the evaluation, please refer to Sect. 4.
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Fig. 2. EOL to SQL query transformation and execution process of CDO-QT.

3 CDO-QT

Some works have proposed query transformation from model query languages
to SQL [5-7,10,13,14]. Inspired in these works, and with the aim of improving
performance in CDO when operating with model query languages, we present
Query Transformation Engine for CDO (CDO-QT).

CDO-QT inputs model traversal queries in a model query language (EOL
[12]) and transforms automatically to SQL queries that are executed directly
in CDO relational back-ends. Figure?2 illustrates the transformation process:
(i) model engineers use EOL; (ii) CDO-QT transforms at runtime EOL state-
ments into a language independent model; (iii) CDO-QT transforms the model
into SQL statements; and (iv) SQL statements are executed directly over the
database.

3.1 Query Language Independent Metamodel

CDO-QT uses a Query Language Independent Metamodel (QLI Metamodel) to
specify queries in a language-independent way, separating the transformation to
SQL from the model-query language. At this time, CDO-QT supports transfor-
mation of model traversal and self-contained EOL queries. A simplification of
QLI Metamodel for model traversal EOL queries is illustrated in Fig. 3:

— Query: Root element of the model. Attribute returnType specifies the type of
result returned by the query and root reference contains an IModelTraversal
instance. IModelTraversal specifies statements that full-traverse models and
is implemented by AllInstances0fKind and CollectionMethod.

— AllInstances0fKind. Abstraction for statements that traverse models
searching instances of an specific kind (specified by type). Sample EOL state-
ment is MethodDeclaration.all.

— CollectionMethod. Abstraction for query statements where all values of an
input collection are evaluated (e.g. .select(md:MethodDeclaration | ...) EOL
statement). name specifies type of the CollectionMethod (e.g. select, collect,
etc.); iterator reference contains the input collection (VariableIterator
instance); and body optional reference contains a IQueryStatement instance.

— VariableIterator. Specifies variables that iterate a collection values within a
query. type contains EClass of the iterated values; name specifies the variable
name; and alias, contains an unique name of the variable. VariableIterator
contains an ISource instance (source reference). ISource is implemented
by classes that specify collection of values iterated by a VariableIterator
instance. Sample EOL statement is md:MethodDeclaration.
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IQueryStatement is an interface implemented by all classes that specify
statements that could be contained by a CollectionMethod (LogicalOP,
ComparisonOP and Value). getType () returns type of the value returned by
the specified statement.

LogicalOP. Abstraction for logical comparison of two statements* (contained
by left and right ) and returns a boolean value (getType()=Boolean).
Operator specifies the logical operator type (AND, OR, NOT, etc.) Sample
EOL statement is: mod.private and mod.static.

ComparisonOP. Similar to LogicalOP but for comparison of values (e.g.
EQUALS, LOWER, etc.). Sample EOL statement is mod.private=true.
Value. Extended by PrimitiveValue, CollectionMethod, ValueMethod and
VariableValue classes, and specifies statements returning a value.
PrimitiveValue. Abstraction for primitive values (e.g. true boolean value).
ValueMethod. For query statements that evaluate a single-value. name speci-
fies method type; params contains parameters of the method; and variable
reference contains a VariableValue instance which is evaluated. Sample EOL
statement is md.isOfType(MethodDeclaration).

VariableValue. Extended by LocalVariableValue and VariablelIterator
classes, is an abstraction for statements returning values derived from a vari-
able specified within the query.

LocalVariableValue. Abstraction for statements that specify value of a
variable within the query. It contains parentVariable feature that refer-
ences a VariableValue instance and sf attribute that specifies a EStructu-
ralFeature. If sf is empty, this class specifies the value returned by the
instance referenced at parentVariable. By contrast, if sf contains a feature,
the class specifies the feature value in the parentVariable class values.

Figure 4 illustrates a sample QLI model that conforms to the QLI Metamodel.

Section 3.3 describes this model and provides information about its generation.

3.2 CDO-QT Design

Figure 5 illustrates the class-diagram of CDO-QT:

4

Language independent (CD0O-QT.generic package). Classes and interfaces
to be extended by EOL- and CDO-Specific packages. This design facilitates
inclusion of new query languages. MLDriver transforms model queries into a
language independent representation (QLI Model). PLDriver transforms into
a database-specific language and executes the query.

EOL-Specific (CDO-QT.eol-specific package). Deals with EOL and is
responsible for parsing and transforming EOL queries into a QLI Model.
EOLDriver extends MLDriver and implements IModel interface of the EMC
API (provided by EOL) to interact with EOL queries. generateQLIM()
method supports transformation of EOL queries into QLI model.

With the exception of NOT operator that only has one statement contained by right

reference.
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Fig. 3. Simplified QLI Metamodel Fig. 4. QLI Model for a sam-
ple EOL query.

— CDO-Specific (CDO-QT.dstore-specific package). Deals with CDO and
is responsible for: (i) transforming QLI Model into a database specific lan-
guage; and (ii) executing the query. We provide implementation for DBStore
(SQL). CDODriver extends PLDriver. generateQuery () method that gener-
ates a SQL query from a language independent model. execQuery() method
executes the generated SQL query through a CDOQuery instance (provided by
CDO to execute SQL queries at server-side). CDODriver also implements
getVersionBranchInfo() (which adds version and branch information to
SQL queries) and postProcessResults() (for post-processing SQL results).

As shown in Fig. 6 user interacts with the EOLDriver (execQuery method).
EOLDriver generates the QLI Model (generateQLIModel method) and calls
getResult method of the CDODriver. CDODriver executes generateQuery
method to obtain SQL query. Then, SQL query is completed with version/branch
information (addVersionBranchInfo()). Next, query is executed, obtained
results post-processed, and returned to EOLDriver and to the user.

3.3 From EOL to QLI Model

CDO-QT generates an intermediate and query language independent QLI Model
from EOL queries: the EOLDriver receives from EOL an AST Tree that specifies
the EOL Query, which is the input point of the transformation. Listing 1.1
illustrates a fragment of the transformation algorithm (genQLIElem(AST n)),
where AST nodes are visited and artifacts of the QLI Model are instantiated.
The algorithm is called recursively until all nodes are visited.
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Fig. 5. CDO-QT class diagram Fig. 6. CDO-QT sequence diagram

Following, QLI Model generation process for the EOL query illustrated
on Fig.4 is described: the transformation process starts with the AST node
corresponding with the MethodDeclaration.all EOL statement. The trans-
formation algorithm obtains the AST node and generates corresponding
abstraction (AllInstancesOfKind instance). Next, AST node that specifies
.select(md — ...) statement is processed by the algorithm and creates a
CollectionMethod instance (with ‘select’ name value). This instance con-
tains a VariableIterator instance that specifies the collection iterator (md).
Variablelterator iterates values returned by MethodDeclaration.all statement
and consequently it contains the previously instantiated A11Instances0fKind.

1 Object genQLIElem (AST n){

2 if

3 else if(n.hasChildren() && isComparison(n.getText ()){
4 ComparisonOP obj = createComparisonOP () ;

5 obj.setlLeft (genQLIElem(n.getFirstChild ()));

6 obj.setRight (genQLIElem(n.getSecondChild ()));

7 obj.setOperator (n.getText ());

8 return obj;

9} ... }

Listing 1.1. Fragment of the QLI Model generation algorithm.

The condition of the CollectionMethod instance is specified by
md.modifiers.exists(mod:Modifier | ...) EOL statement and a CollectionMethod
(named ‘exists’) instance is created under the body reference. It contains a
Variablelterator instance that contains a LocalVariableValue that speci-
fies iterated values (md.modifiers). CollectionMethod body reference is filled
with a ComparisonOP (abstraction of condition mod.private=true condition).
The fragment shown in Listing 1.1 contains code related to the generation of
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the ComparisonOP instances. In this case, it satisfies n.hasChildren() con-
dition of line 3 (one child for each compared side) and n.getText() of line
3 returns the string = satisfying also second condition. Satisfying conditions
involves the instantiation of a new ComparisonOP(line 4). Left and right refer-
ences are obtained executing the algorithm genQLIElem(AST n) for two chil-
dren (lines 5,6). In this case, left contains a LocalVariableValue that spec-
ifies mod.private statement, and right contains a PrimitiveValue instance
that specifies true boolean value. Finally, operator feature is setted with the
value returned by n.getText () (line 7) and the instantiated element is returned
(line B).

3.4 From QLI Model to SQL

EOLDriver calls CDODriver passing by arguments the QLI Model and a CDO-
Resource instance (queried model). At this point, the prototype uses the default
mapping strategy of the DBStore (horizontal mapping). We can distinguish two
different types of tables within the domain-specific data-schema: (a) Object-
Tables: contain information about all the instances of an specific type. The
name of the each table corresponds with name of the type of the contain-
ing elements (e.g. MethodDeclaration); (b) Many-Value-Ref-Tables: contain
information about a many-value reference of an specific type. The name of the
table will follow this format: TypeName FeatureName List (e.g. MethodDecla-
ration_BodyDeclarations_List).

Table 2 describes a simplified version of SQL queries that are generated from
each QLI Model element. Branching and versioning related statements are added
in generated SQL queries:

— WHERE statements that obtain information from an Object-Table.
Following, simplified version of the added SQL statement that is described:
CDO_VERSION>0 AND ((CDO_BRANCH =:branchID AND CDO_CREATED <=
:commit AND (CDO_REVISED=0 OR CDO_REVISED>:commit)) OR (:hasBase
AND CDO_BRANCH =:baseID AND CDO_CREATED<=:basetime AND (CDO_
REVISED=0 OR CDO_REVISED>:basetime))). The statement contains the fol-
lowing parameters: (1) commit, specifies the timestamp of the commit corre-
sponding with the model version; (2) branchID, specifies the identifier of the
branch that is being queried; (3) hasBase, boolean value that specifies if the
branch is based in another branch; (4) baseID, specifies the identifier of the
base branch; and (5) baseTime, specifies the timestamp of the corresponding
version of the base branch.

— INNER JOIN statements that join an Object-Table with a Many-
Value-Ref-Table. This is a simplified version of the SQL statement that is
added: objectTable.CDO_VERSION = referenceTable.CDO_VERSION AND
objectTable.CDO_BRANCH = referenceTable.CDO_BRANCH.
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Table 2. SQL queries generated for each QLI model element.

QLI Element Generated SQL

AllKindInstances |types: SELECT * FROM TypeTable WHERE ...
subtypes: (SELECT * FROM SubTypelTable)
UNION (SELECT * FROM SubType2Table)

LogicalOP (rightStatementSQL (AND | OR | ...) leftStatementSQL)
ComparisonOP (rightStatementSQL ( =| < | ...)leftStatementSQL)
PrimitiveValue strings: ‘value’; other types: value

ValueMethod method-specific SQL. Ex.: var.feature.isTypeOf(type):

EXISTS(SELECT * FROM TypeTable AS T

WHERE var.feature=T.CDO_ID AND ...)
CollectionMethod | method-specific SQL. Ex.: var.feature.exists(it — cond):
EXISTS (SELECT iteratorName.*

FROM (VariableIteratorSQL) AS iteratorName
WHERE condSQL)

Variablelterator IteratorParentType_IteratorParentFeature_List
INNER JOIN (iteratorType) AS iteratorName ON
LocalVariableValue | multi-value refs: SELECT featureName.CDO_VALUE

FROM ParentType_Feature_ List

INNER JOIN FeatureType AS featureName ON

WHERE ParentType_Feature_List.CDO_SOURCE =
parent.CDO_ID AND ... )

attributes and single-value refs: SELECT parent.feature
FROM ParentTable WHERE 1

3.5 Executing the Query

Version and branch parameters are set using the CDOResource. Listing 1.2 illus-
trates the parameter setting process: (1) parameter values are obtained from
the CDOResource instance; (2) obtained values are set to the generated SQL
through the CDOQuery instance (cqo); and (3) the SQL query is executed over
the CDO repository using the CDOQuery class provided by CDO. Obtained
results correspond to all the models (CDOResource) of the repository. To provide
results for a specific model, CDO-QT filters and/or analyses the SQL results.
For example, to obtain all MethodDeclaration instances, the post-process selects

those that are part of the model (object.cdoResource() == resource). To
check if a MethodDeclaration exists in a model, SQL results are analysed (e.g.
while(res.hasNext()){ if (res.getNext().cdoResource == resource)

return true;} return false;). We have decided to do this post-process as
including it in the transformation would require complex SQL queries that could
have impact in performance.
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void setQueryParameters (CDOResource resource, CDOQuery cqo){
boolean hasParent = false;

long commit = getTimeStamp (resource.cdoView)

long branchID = resource.cdoView().getBranch().getID();
if (existsBase (resource)) hasParent = true;

long baseID = getBaseID(resource);

long baseTime = getBaseTime (resource) ;

cqo.setParameter ("commit", Long.toString(commit));
cqo.setParameter ("branchID", Long.toString(branchID));
cqo.setParameter ("hasParent", hasParent);
cqo.setParameter ("baseID",Long.toString(baselD));
cqo.setParameter ("baseTime" ,Long.toString(baseTime)) ;}

Listing 1.2. Setting paramater values of the generated SQL queries.

4 FEvaluation

All the experiments have been executed as a standalone application over a
Microsoft Azure® virtual machine configured with a 4 Core processor, 14 GB
of RAM, 200 GB SSD, and running 64-Bit Windows Server 2012 and Java SE
v1.8.0. We have used Eclipse Mars with CDO 4.4. CDO repositories have been
executed in embedded mode® to measure total memory usage and avoid the
uncertainty of connections in the execution time. Repositories run on top of H2
v1.3.168, using the DBStore with its default mapping, caching and pre-fetching
values, and supporting audits and branches.

Correctness of query-results has been ensured by automatically comparing
the results of each query using different languages. In order to get reliable num-
bers, each query was processed 5 times for each evaluation case and Java Vir-
tual Machine has been restarted for each execution. Results have been evaluated
against the following quantitative metrics: M1: Average Execution Time (in sec-
onds) and M2: Maximum Memory Usage (in MB). M2 includes memory used
by the CDO Client and Server. We have used three different queries in the eval-
uation: Q1: Number of classes (TypeDeclaration instances) existing within the
model, Q2: Number of private methods (MethodDeclaration instances) existing
within the model and Q3: Number of singletons (TypeDeclaration instances)
existing within the model (GraBaTs case study query). All queries traverse
model but with increasing complexity. We have expressed queries in Plain EMF,
OCL (used by MDT OCL and CDO-OCL), SQL and EOL (used by CDO-QT).
We have used metamodel and model instances from the GraBaTs 2009 case
study [16]. Models specify source code of different Java packages and conform to
the JDTAST metamodel which contains abstractions of the Java source code.
Table 3 shows results of queries for each model.

In this evaluation we address: Which is the performance of querying mod-
els within a CDO repository using EMF Plain, MDT OCL, CDO-OCL, SQL

5 Azure: https://azure.microsoft.com/en-us/services/virtual-machines, .
5 CDO/Embedded: https://wiki.eclipse.org/CDO/Embedded.
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Table 3. Properties of the GraBaTs models.

XMI | Repository | Numb. of | Model Q1 Results | Q2 Results | Q3 Results
size |size models Elem
Set0 | 8,8 |15.3MB 1 70447 14 4
Setl |27 |43.8MB 1 198466 | 40 38 2
Set2 | 271 |307MB 1 2082841 | 1605 1793 41
Set3 | 598 | 784 MB 1 4852855 | 5314 9275 155
Setd | 646 |1.17GB 1 4961779 | 5984 10086 164
Sets | n/a |2.01GB 2 9923558 | 5984 10086 164
Set6 |n/a |2.88GB 3 14885337 | 5984 10086 164
Set7 |n/a |3.67GB 4 19847116 | 5984 10086 164
Set8 | n/a |4.45GB 5 24808895 | 5984 10086 164
Set9 n/a |5GB 6 29770674 | 5984 10086 164

and CDO-QT? We distinguish two different configuration factors (F) that may
impact:

— F1, Size of the model: We measure how the increasing size of the model
may influence on the performance (execution time and memory). We measure
the size of a model in number of elements. For this factor, each model has
been persisted in a different CDO Repository (from SetO to Set4 of Table 3).

— F2, Size of the repository: As in CDO we can save many models in the
repository, we have measured how the increasing size of the repository may
influence on the performance. We measure the size of the repository in number
of models and elements within the repository. For this factor, we have stored
set4d model copies within the same CDO Repository (from Set4 to Set9 of
Table 3).

Extended information in http://xdecarlos.bitbucket.org/fase_2016/.

4.1 Discussion

F1: Model-Size Influence (Set0-Set4). Size of the queried model has a great
impact over the time and memory required in Plain EMF and MDT OCL, and
three queries result in similar values (entire model is always loaded in memory).
In Set4, these client-side solutions require more than 6000 % of time of Set0 and
more than 1100 % of memory. Plain EMF requires 17-18s and 396-513 MB for
querying the smallest model (Set0) and 1140-1166 s and 6-6.1 GB for the largest
(Setd). Model size impact is slightly lower for MDT OCL as it requires 17-18s
and 322-342 MB for Set0 and 1090-1101s and 6-6.1 GB for Set4.

Figure 7 illustrates time and memory results and they show that, the impact
of the model size is lower if queries are executed at server-side. In Set4, these
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Fig. 7. Execution time and memory results of queries from Set0 to Set4.

solutions require up to 2400 % of time of SetO and up to 800% of memory.
However, increase values are much lower than on client-side solutions.

CDO-OCL is more than 17 times faster than Plain EMF and MDT OCL, and
it only requires 1 s for executing queries in Set0. Memory usage is also reduced to
123 MB (Q1-Q2) and 67 MB (Q3). In case of other sets, results vary depending
on the query: Q1 requires less time than Q2 and Q3, and Q2 less than Q3. For
example, in Setd Q1 requires 8 s, Q2 22s and Q3 28s. However, Q3 is more than
38 times faster than any query in Plain EMF or MDT OCL. In terms of memory,
Q1 requires less than Q2 and Q3: in Set4 Q1 needs 235 MB, Q2 636 MB and Q3
590 MB. Worst memory value (636 MB) is more than 9 times lower than the
best memory usage result of the client-side solutions. SQL shows better results:
queries require less than a second and 118 MB in Set0; and less than 12s and
375MB in Set4. Q1 requires less time and memory than Q2 and results are
similar of CDO-OCL. In the case of Q2 it is 2 times faster than CDO-OCL and
memory usage is reduced by 40 % for Set4. Q3 time and memory results are lower
than Q1 and Q2, and it is more than 4 times faster than CDO-OCL requiring
less than 50 % of memory.

Performance and memory results of CDO-QT for executing queries using
EOL are similar to SQL. Execution time results show that CDO-QT requires
between 1 and 2s more than SQL to be executed. The generated SQL query is
the same that is used in the SQL experiments, and it indicates that the extra-
time corresponds with the EOL to SQL transformation. CDO-QT requires 1s
and less than 130 MB for executing queries in Set0, and less than 8s and 315 MB
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Fig. 8. Execution time and memory results of queries from Set4 to Set9.

in Set4. As occurs in SQL, Q3 requires less time and memory than Q1 and Q2,
and Q1 less than Q2. For example in Set4: Q1 requires 8s and 263 MB, Q2 12s
and 315MB, and Q3 7s and 263 MB. CDO-QT results are significantly better
than using the other server-side solution (CDO-OCL), and much better than
using a client-side solution (Plain EMF and MDT-OCL).

F2: Repository-Size Influence (Set4-Set9). Time and memory results
obtained querying F2 models (set4-set9) indicate that the size of the reposi-
tory has not influence in queries executed at the client-side: In the case of Plain
EMF execution time value for executing queries is between 1140-1174 s and
requires around 6 GB of memory; in the case of MDT OCL the execution time is
slightly lower (between 1081-1113 s) and also requires around 6 GB of memory.

As Fig. 8 illustrates, this scenario changes in case of the server-side solutions,
where the size of the repository has influence. CDO-OCL results show a constant
increase of the query execution time from one repository to the subsequent one
(e.g. from Set5 to Set6). The increase changes according to query: between 20-
28s for Q1, 31-41s for Q2, and 35-42s for Q3. Memory usage increases: from
235MB to 695MB in Q1; from 636 MB to 1860 MB in Q2; and from 590 MB
to 2171 MB of Q3. The influence of the repository size is greater in Q3, which
requires more time and memory. In Set4, CDO-OCL requires around 1100 % of
time of SetO and around 330 % of memory. The trend is similar in SQL, but the
time increase between repositories is lower: 4-6s for Q1, 7-8s for Q2, and 4-5s
for Q3. Memory values increase from 285 MB to 849 MB for Q1; from 375 MB
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to 1249 MB for Q2; and from 289 MB to 968 MB for Q3. In the case of SQL,
repository-size influence is greater in Q2. Q3 is resolved faster and Q1 requires
less memory than others. In Set4, SQL requires around 430 % of time of Set0
and around 300 % of memory. While increase is similar to CDO-OCL in case of
memory, increment of the execution time is lower.

CDO-QT results agree with those obtained in SQL and execution time and
memory is also influenced by repository size, but it is lower than in CDO-OCL.
Execution time difference between SQL and CDO-QT is only of 1-2s (transfor-
mation time overhead). In terms of memory, CDO-QT uses less memory than
others (including SQL): from 263 MB to 761 MB for Q1, from 315 MB to 1136 MB
for Q2, and from 264 MB to 579 MB for Q3. The filtering mechanism provided
by CDO-QT could be the reason of memory usage difference between SQL and
CDO-QT. Results show that the execution time and memory usage of CDO-
QT is much lower than the required by the client-side solutions (Plain EMF
and MDT OCL). Additionally, CDO-QT resolves these queries faster than the
natively provided server-side version of OCL (CDO-OCL).

4.2 Threats to Validity

All the queries full traverse the model, therefore they start the computation
by obtaining all the instances of an specific type that exists within the queried
model. This type of queries covers the majority of computational-demanding
queries in real industrial domains such as reverse engineering domain [9]. How-
ever, there are other types of queries (e.g. non-traversal queries or queries that
modify the model) that have not been tested. Moreover, models have been gen-
erated for test-case purpose. Using industrial models and real model operations
would be more realistic. We plan to perform it in a future version of this work.

5 Related Work

Query Transformation. [10] describes a framework that supports mapping of
UML models to arbitrary data-schemas and mapping of OCL invariants to a
declarative query language. [14] transforms OCL constraints into SQL to check
integrity of UML models persisted in relational repositories. [7] generates SQL
queries from OCL constraints and executes over MySQL databases. [6] pro-
vides a tool based on OCL2SQL that generates views from OCL constraints.
All these approaches provide generation at compilation-time from OCL (declar-
ative language) to SQL (declarative language). By contrast, CDO-QT trans-
forms at run-time EOL, an imperative model-level language, into a declarative
persistence-specific query language (SQL).

CDO Evaluation. [15] includes evaluation of CDO by comparing results of
performing different model operations (store, query and modify) with XMI and
Morsa. [2] describes the performance and memory usage required by different
persistence mechanisms (Teneo, CDO, Neo4J and OrientDB) for executing the
GraBaTs case study query. These studies show CDO results for three models of
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GraBaTs (Set0-2), by contrast, our evaluation includes results of all the Gra-
BaTs models (Set0-4). [3,9,15] include an analysis of CDO and other persistence
mechanisms through the execution of different types of queries. While they use
one query language for executing queries in CDO, our study shows results for
different query languages (Plain EMF, MDT OCL, CDO OCL, SQL and EOL
with CDO-QT). [8] focuses the evaluation in the model query languages and
describes the GraBaTs query results using different query languages and persis-
tences (XMI, CDO and MORSA). While the GraBats query is included in this
study, we have executed two additional queries using different query languages
that are executed against CDO repositories.

Improve Query Performance. EMF-IncQuery provides support for executing
model queries in an incremental way only over model parts that have changed
[18]. [19] focuses on improving efficiency of model traversal EOL queries. While
these approaches provide improvements on user-side query execution, CDO-QT
provides support for generating SQL queries that are executed over persistence
(relational back-end) and at server-side.

6 Conclusions and Future Work

In this paper, we have presented CDO-QT, an approach that: (i) provides a
two-step transformation process that generates SQL queries from EOL queries;
and (ii) executes generated SQL at server-side over CDO repositories. CDO-QT
is able to execute model traversal queries in a model query language (EOL),
but with a performance similar to SQL. We have compared the performance
and memory usage results of executing different model query languages: Plain
EMF, MDT OCL, CDO OCL, SQL and EOL using CDO-QT. GraBaTs 2009
Case Study models have been persisted in different CDO repositories with size
from 15.3 MB to 5 GB. Execution time and memory results show that CDO-QT
is a promising alternative for making queries from EOL to CDO repositories.
Results indicate that CDO-QT is much faster and use less memory than model
query languages executed at client-side of CDO (Plain EMF and MDT OCL).
Moreover, obtained results are better than the natively supported CDO-OCL
that executes OCL queries at server-side.

This prototype of CDO-QT provides support for executing self-contained and
model traversal EOL queries. However, we plan to extend it to support more
types of EOL queries (e.g. non-traversal queries, queries that modify models,
query chains, etc.). For future work, we plan to provide CDO-QT implementa-
tions of additional model query languages, supporting transformation of other
types of languages (e.g. IncQuery or OCL). We also plan to provide implemen-
tations for other stores of CDO and for other persistence mechanisms.
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