
PrDK: Protocol Programming with Automata

Sung-Shik T.Q. Jongmans1,2(B) and Farhad Arbab3

1 Open University, Heerlen, The Netherlands
ssj@ou.nl

2 Radboud University Nijmegen, Nijmegen, The Netherlands
3 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands

Abstract. We present Prdk: a development kit for programming pro-
tocols. Prdk is based on syntactic separation of process code, presum-
ably written in an existing general-purpose language, and protocol code,
written in a domain-specific language with explicit, high-level elements
of syntax for programming protocols. Prdk supports two complementary
syntaxes (one graphical, one textual) with a common automata-theoretic
semantics. As a tool for construction of systems, Prdk consists of syntax
editors, a translator, a parser, an interpreter, and a compiler into Java.
Performance in the Nas Parallel Benchmarks is promising.

1 Introduction

In the early 2000s, hardware manufacturers shifted their attention from man-
ufacturing faster—yet purely sequential—unicore processors to manufacturing
slower—yet increasingly parallel—multicore processors. In the wake of this shift,
concurrent programming became essential for writing scalable programs on com-
modity hardware. Conceptually, concurrent programs consist of processes, which
implement primary modules of sequential computation, and protocols, which
implement the rules of concurrent interaction that processes must abide by.

As programmers have been writing sequential code for decades, implementing
processes poses no new fundamental challenges. What is new—and notoriously
difficult—is programming protocols. One contributing factor to the complexity of
this activity is today’s popular programming languages not providing program-
mers explicit, high-level elements of syntax for programming protocols. Instead,
programmers need to use rather low-level reads/writes to shared memory pro-
tected by mutual exclusion—locks, semaphores, monitors, and the like.

In a long-term project at Cwi, we study an alternative approach to concur-
rent programming, based on syntactic separation of processes from protocols.
In this approach, programmers write their (sequential) processes in a general-
purpose language (gpl), while they write their (concurrency) protocols in a
domain-specific language (dsl). Paraphrasing the definition of dsls by Van
Deursen et al. [3], a dsl for protocols “is a programming language that offers,
through appropriate notations and abstractions, expressive power focused on,
and [..] restricted to, [programming protocols].” The semantics of our dsl is
based on automata; on top of it, we have both a graphical and a textual syntax.
c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 547–552, 2016.
DOI: 10.1007/978-3-662-49674-9 33



548 S.-S.T.Q. Jongmans and F. Arbab

Fig. 1. Api for ports (left) and example hand-written processes (right) in Java

In this paper, we present a development kit for our dsl for protocols. In
Sect. 2, we briefly present the dsl. In Sect. 3, we present our development kit,
available at http://www.open.ou.nl/ssj/prdk. Section 4 concludes this paper with
some performance numbers and future work. We invite the reader to consult the
first author’s phd thesis for details and examples [7].

2 The DSL

Processes, implemented in a gpl, primarily perform sequential computations.
To interact with each other, in our programming model, every process also
owns a set of ports. Ports mark the interface between processes: output ports let
processes offer data to other processes, while input ports let processes accept data
from other processes. Processes can perform two blocking operations on ports:
put and get. When a process performs a put (get) on an output port (input port),
this operation becomes pending on that port and the process itself becomes sus-
pended. When a put (get) completes, its previously suspended process resumes
and offers (accepts) a datum. Whenever a process offers (accepts) a datum in
this way, it does not know whereto (wherefrom) this datum goes (comes); only
protocols, programmed as syntactically separate modules from processes through
explicit, high-level elements of syntax in a dsl, control when put/get operations
may complete on which ports and how data flow between ports. As such, proto-
cols effectuate only admissible interactions among (the ports of) the processes
in a program. We stipulate that put/get have value passing semantics (although
programmers are free to pass and interpret references to shared data as values).
Figure 1 shows an Api for ports and two processes in Java, defined as two sta-
tic methods (not directly as Java threads, which programmers do not need to
manually manage, or even know about, in our programming model). The actual
Api also has versions of put/get with timeouts (omitted here to save space).

By effectuating only admissible interactions, protocols essentially constrain
the completion of put/get operations. Formally, we can represent such con-
straints with automata [7], whose every transition models a data-flow between
ports with a pending put/get operation. Figure 2 shows an example. The automa-
ton in this figure models a producers/consumer protocol involving two output
ports A and B (each owned by a different producer, presumably) and an input

http://www.open.ou.nl/ssj/prdk


PrDK: Protocol Programming with Automata 549

Fig. 2. Example automaton for a producers/consumer protocol (left), its graphical
syntax (middle), and its textual syntax (right)

port C (owned by the consumer). Initially, a put by the producer owning A can
complete, causing that producer to offer a datum into internal buffer x (modeled
by expression A = x•). Alternatively, a put by the producer owning B can simi-
larly complete. Subsequently, only a get by the consumer owning C can complete,
causing the consumer to accept the datum previously stored in x (modeled by
expression •x = C). This protocol, thus, admits asynchronous, unordered, reliable,
transactional communication from two producers to a consumer.

Providing programmers syntax for writing protocols directly as automata
has at least one major issue: automata quickly grow prohibitively large. A more
scalable approach for defining automata is one based on their (parallel) com-
position: programmers should construct complex protocols out of simpler ones,
by composing (multiplying) smaller automata into larger ones, starting from a
predefined “core set” of primitive automata. We consider two declarative syn-
taxes for representing such multiplication expressions: Reo [1] and Pr [7]. Given
such a core set, in Reo, programmers draw multiplication expressions as data-
flow graphs; in Pr, programmers write multiplication expressions as automata
signatures. Figure 2 exemplifies both Reo and Pr (for the same protocol). In the
graph, every node/vertex denotes a primitive automaton in the core set; in the
text, the same applies to every signature (and their multiplication is, in turn,
denoted by a new signature LateAsyncMerger2).

3 The Development Kit

Our development kit, called Prdk, consists of tools (Eclipse plugins) for protocol
programming with automata (without ever exposing programmers to automata
directly): editors for Reo and Pr, an animation engine for Reo, a parser/
interpreter for Pr, a Reo-to-Pr translator, and a Pr-to-Java compiler. The Reo
editor and its animation engine have previously been developed as part of the
Ect (http://reo.project.cwi.nl), a collection of Eclipse plugins for Reo.

In Prdk’s basic workflow, programmers start by drawing a protocol as a Reo
graph for a small number of processes, using the drag/drop interface of the Reo
editor. The animation engine enables programmers to visualize the admissible
data-flows through the graph, which is an instructive and helpful aid in protocol
debugging. Subsequently, programmers can import processes, by drag/dropping
Java files onto the same canvas (which appear as boxes alongside the graph,
with distinct markers for their ports), and link (the ports of) those processes
to (the nodes in the graph of) the protocol as desired. The resulting diagram

http://reo.project.cwi.nl


550 S.-S.T.Q. Jongmans and F. Arbab

Fig. 3. Example compiler-generated protocol (partial) and main in Java

comprehensively implements a full program. By invoking the Reo-to-Pr trans-
lator, the Pr parser/interpreter, and the Pr-to-Java compiler on this diagram,
Prdk generates Java code for the protocol and merges this compiler-generated
code with hand-written code for processes according to their links in the dia-
gram (detailed below). A Java compiler, then, can translate everything into an
executable binary. In the basic workflow, the Pr syntax is completely hidden
from programmers (i.e., the Reo-to-Pr translator, the Pr parser/interpreter, and
the Pr-to-Java compiler are transparently chained, giving the programmer the
illusion of a Reo-to-Java compiler).

Often, programmers need different versions of a program with different num-
bers of processes (e.g., depending on the number of cores of the target hardware).
The Reo syntax does not conveniently support this. For instance, Reo requires
programmers to draw a specific diagram for a protocol among two processes,
another specific diagram for the same protocol among three processes, etc.; Reo
does not support drawing a generic diagram for k producers and one consumer.
Pr, in contrast, does support such parametrization. The basic workflow can,
thus, be extended with an extra step in which programmers explicitly use the
Reo-to-Pr translator to translate their Reo diagram into a Pr text, which they
subsequently can modify by parametrizing the protocol in its number of ports.

From a theoretical prespective, the most interesting tools in Prdk are the
Pr parser/interpreter and the Pr-to-Java compiler. The parser consumes a Pr
program as input and produces a syntax tree as output (if the input unam-
biguously satisfies Pr’s concrete syntax); we implemented the parser using the
Antlr parser generator. The interpreter consumes a syntax tree (produced by
the parser) as input and produces a list of automata, which represents a multi-
plication expression of automata, as output (if the input is well-typed). Finally,
the compiler consumes a list of automata for a protocol (produced by the inter-
preter) and a list of method signatures for processes (in the syntax tree produced
by the parser) as input and produces Java code as output.

Roughly, the compiler and its generated code work as follows. First, the
compiler computes the product of the automata in its input list. Second, the
compiler translates the resulting product automaton (which comprehensively
models a protocol) into a singleton Java class (which effectively encapsulates a



PrDK: Protocol Programming with Automata 551

state machine for simulating that automaton). The constructor of such a class
has a number of formal port parameters, to bind its single instance to actual
ports at “construction-time”. After construction-time, then, a thread monitors
these bound ports for new put/get operations performed by processes. When-
ever a put/get occurs, this thread checks if that operation—together with the
already pending put/get operations—enables the firing of a transition out of the
current state. If so, the thread makes that transition and completes the put/get
operations involved. As the constructor of a compiler-generated “protocol class”
(e.g., Fig. 3), hand-written “process methods” (e.g., Fig. 1) have formal port
parameters, to bind thread-wrapped calls of those methods to actual ports at
construction-time. The task of constructing ports and passing them both to the
constructor of a protocol class and to process methods is performed in the main

method. This main method is, as the protocol class, generated by the compiler
(based on linkage information either in a Reo diagram or in its Pr equivalent).

We significantly simplified our description of the workings of the compiler and
its generated code. For instance, we tacitly assumed that a program consists of
only one protocol, but Prdk supports also programs with multiple protocols.
Also, notably, while computing the product of automata, the compiler applies
a number of provably correct (i.e., bisimulation-preserving) optimizations and
automata transformations to improve the performance and scalability of its gen-
erated code. We presented these optimizations in previous work [8–11]; a com-
prehensive overview, including formal definitions and proofs of their correctness,
appears elsewhere [7]. Also, although Prdk currently supports only Java as the
target gpl, we do not use any Java-specific features; our choice for Java is, in
that sense, arbitrary. Our only requirement for a target gpl is that it supports
some form of multithreading. For instance, extending the compiler with support
for C+Pthreads is straightforward, as already worked on by a msc student [12].

4 Conclusion

1
1

1
1

1
1

Fig. 4. Benchmark results

To evaluate the performance of the code generated
by the compiler in Prdk, we compared the Java ref-
erence implementation of the Nas Parallel Bench-
marks [4]—a popular benchmark suite for paral-
lel performance—against an implementation devel-
oped with Prdk, on a machine with 24 cores using
the workflow described in Sect. 3. In seven bench-
marks, we considered six numbers of processes (2,
4, 8, 16, 32, 64) for various problem sizes, yielding
a total of 126 tests. Figure 4 summarizes our results,
where every bar represents the percentage of times
the Prdk-based implementation achieved a certain
speedup relative to the reference implementation. In 37 % of cases (gray bars),
the Prdk-based implementation is at most only 10 % slower than the reference
implementation; in 38 % percent of cases (black bars), the Prdk-based implemen-
tation is faster. Given the high level of abstraction supported by Reo/Pr, and the



552 S.-S.T.Q. Jongmans and F. Arbab

consequent burden carried by the compiler—instead of the programmer—to pro-
duce efficient code, these are promising first results. Details appear elsewhere [7].

Another recent initiative based on syntactic separation of processes from pro-
tocols is Scribble [5,13]. In Scribble, protocols are expressed through multiparty
session types [6]. One fundamental difference between Scribble and our approach
is that in Scribble, all interaction is asynchronous, order-preserving, and reliable,
whereas our automata allow for mixing synchrony and asynchrony (in the same
protocol) and support nondeterminism (both of orderings and reliability).

Our present version of Prdk does not include previous verification tools for
Reo, notably model checking [2]. We are currently investigating how to best inte-
grate those existing tools for a seamless implementation/verification experience.

References

1. Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)
Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp.
169–206. Springer, Heidelberg (2011)

2. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and ver-
ification of systems with exogenous coordination using Vereofy. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 97–111. Springer,
Heidelberg (2010)

3. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Not. 35(6), 26–36 (2000)

4. Frumkin, M., Schultz, M., Jin, H., Yan, J.: Performance and scalability of the NAS
parallel benchmarks in Java. In: Proceedings of IPDPS 2003, p. 139 (2003)

5. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling
interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT
2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011)

6. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
ACM SIGPLAN Notices, Proceedings of POPL 2008, vol. 43, no. 1, pp. 273–284
(2008)

7. Jongmans, S.S.: Automata-Theoretic Protocol Programming. Ph.D. thesis, Uni-
versiteit Leiden (2016)

8. Jongmans, S.-S.T.Q., Arbab, F.: Take command of your constraints!. In: Holvoet,
T., Viroli, M. (eds.) Coordination Models and Languages. LNCS, vol. 9037, pp.
117–132. Springer, Heidelberg (2015)

9. Jongmans, S.S., Arbab, F.: Global consensus through local synchronization: a for-
mal basis for partially-distributed coordination. Sci. Comput. Program. 115–116,
199–224 (2016)

10. Jongmans, S.-S.T.Q., Halle, S., Arbab, F.: Automata-based optimization of inter-
action protocols for scalable multicore platforms. In: Kühn, E., Pugliese, R. (eds.)
COORDINATION 2014. LNCS, vol. 8459, pp. 65–82. Springer, Heidelberg (2014)

11. Jongmans, S.S., Santini, F., Arbab, F.: Partially-distributed coordination with reo
and constraint automata. Serv. Oriented Comput. Appl. 9(3), 311–339 (2015)

12. van de Nes, M.: Developing Efficient Concurrent C Application Programs Using
Reo. Master’s thesis, Universiteit Leiden (2015)

13. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The Scribble protocol language. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 22–41.
Springer, Heidelberg (2014)


	PrDK: Protocol Programming with Automata
	1 Introduction
	2 The DSL
	3 The Development Kit
	4 Conclusion
	References


