Abstract
The approach FIBAD is introduced with the purpose of computing approximate borders of frequent itemsets by leveraging dualization and computation of approximate minimal transversals of hypergraphs. The distinctiveness of the FIBAD’s theoretical foundations is the approximate dualization where a new function \(\widetilde{f}\) is defined to compute the approximate negative border. From a methodological point of view, the function \(\widetilde{f}\) is implemented by the method AMTHR that consists of a reduction of the hypergraph and a computation of its minimal transversals. For evaluation purposes, we study the sensibility of FIBAD to AMTHR by replacing this latter by two other algorithms that compute approximate minimal transversals. We also compare our approximate dualization-based method with an existing approach that computes directly, without dualization, the approximate borders. The experimental results show that our method outperforms the other methods as it produces borders that have the highest quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Frequent Itemset Border Approximation by Dualization.
- 2.
Approximate Minimal Transversals by Hypergraph Reduction.
- 3.
Frequent Itemset Mining Implementations, http://fimi.ua.ac.be/data/.
- 4.
References
Abreu, R., van Gemund, A.: A low-cost approximate minimal hitting set algorithm and its application to model-based diagnosis. In: Proceedings of the 8th Symposium on Abstraction, Reformulation and Approximation (SARA 2009), Lake Arrowhead, CA, USA, July 2009
Afrati, F., Gionis, A., Mannila, H.: Approximating a collection of frequent sets. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data mining, pp. 12–19, Seattle, WA, USA, August 2004
Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large database. In: ACM SIGMOD International Conference on Management of Data, pp. 207–216, May 1993
Bailey, J., Manoukian, T., Ramamohanarao, K.: A fast algorithm for computing hypergraph transversals and its application in mining emerging patterns. In: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM 2003), pp. 485–488, Melbourne, Florida, USA, November 2003
Bayardo, R.: Efficiently mining long patterns from databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 85–93, Seattle, June 1998
Berge, C.: Hypergraphs: Combinatorics of Finite Sets. North Holland Mathematical Library, vol. 45 (1989)
Boley, M.: On approximating minimum infrequent and maximum frequent sets. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 68–77. Springer, Heidelberg (2007)
Boulicaut, J.F., Bykowski, A., Rigotti, R.: Free-sets : a condensed representation of boolean data for the approximation of frequency queries. Data Min. Knowl. Discov. 7(1), 5–22 (2003)
Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: a maximal frequent itemset algorithm for transactional databases. In: Proceedings of International Conference on Data Engineering (ICDE 2001), pp. 443–452, Heidelberg, Germany (2001)
De Marchi, F., Petit, J.: Zigzag: a new algorithm for mining large inclusion dependencies in database. In: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM 2003), pp. 27–34, Melbourne, Florida, USA, November 2003
Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD 1999), pp. 43–52, San Diego, USA, August 1999
Dong, G., Li, J.: Mining border descriptions of emerging patterns from datasetpairs. Knowl. Inf. Syst. 8(2), 178–202 (2005)
Ducournau, A., Bretto, A., Rital, S., Laget, B.: A reductive approach to hypergraph clustering: an application to image segmentation. Pattern Recogn. 45(7), 2788–2803 (2012)
Durand, N., Crémilleux, B.: ECCLAT: a new approach of clusters discovery in categorical data. In: Proceedings of the 22nd SGAI International Conference on Knowledge Based Systems and Applied Artificial Intelligence (ES 2002), pp. 177–190, Cambridge, UK, December 2002
Durand, N., Quafafou, M.: Approximation of frequent itemset border by computing approximate minimal hypergraph transversals. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 357–368. Springer, Heidelberg (2014)
Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems in logic and AI. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 549–564. Springer, Heidelberg (2002)
Flouvat, F., De Marchi, F., Petit, J.M.: A new classification of datasets for frequent itemsets. Intell. Inf. Syst. 34, 1–19 (2010)
Flouvat, F., De Marchi, F., Petit, J.: ABS: adaptive borders search of frequent itemsets. In: Proceedings of IEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI 2004), Brighton, UK, November 2004
Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. Algorithms 21(3), 618–628 (1996)
Gouda, K., Zaki, M.J.: GenMax: an efficient algorithm for mining maximal frequent itemsets. Data Min. Knowl. Discov. 11, 1–20 (2005)
Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharma, R.S.: Discovering all most specific sentences. ACM Trans. Database Syst. 28(2), 140–174 (2003)
Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data Min. Knowl. Discov. 15, 55–86 (2007)
Hasan, M., Zaki, M.J.: MUSK: uniform sampling of k maximal patterns. In: SIAM Data Mining Conference (SDM 2009), pp. 650–661, Sparks, Nevada, USA (2009)
Hébert, C., Bretto, A., Crémilleux, B.: A data mining formalization to improve hypergraph transversal computation. Fundamenta Informaticae, IOS Press 80(4), 415–433 (2007)
Jin, R., Xiang, Y., Liu, L.: Cartesian contour: a concise representation for a collection of frequent sets. In: Proceedings of the 15th International Conference on Knowledge Discovery and Data Mining (KDD 2009), pp. 417–425, Paris, France, June 2009
Karonski, M., Palka, Z.: One standard Marczewski-Steinhaus outdistances between hypergraphs. Zastosowania Matematyki Applicationes Mathematicae 16(1), 47–57 (1977)
Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: applications in VLSI domain. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 7(1), 69–79 (1999)
Kavvadias, D., Stavropoulos, E.: An efficient algorithm for the transversal hypergraph generation. Graph Algorithms Appl. 9(2), 239–264 (2005)
Lin, D.-I., Kedem, Z.M.: Pincer search: a new algorithm for discovering the maximum frequent set. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 105–119. Springer, Heidelberg (1998)
Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Min. Knowl. Discov. 1(3), 241–258 (1997)
Moens, S., Goethals, B.: Randomly sampling maximal itemsets. In: Proceedings of ACM SIGKDD Workshop on Interactive Data Exploration and Analytics (IDEA 2013), pp. 79–86, Chicago, Illinois, USA (2013)
Murakami, K., Uno, T.: Efficient algorithms for dualizing large-scale hypergraphs. Discrete Appl. Math. 170, 83–94 (2014)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Inf. Syst. 24(1), 25–46. Elsevier (1999)
Ramamohanarao, K., Bailey, J., Fan, H.: Efficient mining of contrast patterns and their applications to classification. In: Proceedings of the 3rd International Conference on Intelligent Sensing and Information Processing (ICISIP 2005), pp. 39–47, Bangalore, India, December 2005
Rioult, F., Zanuttini, B., Crémilleux, B.: Nonredundant generalized rules and their impact in classification. In: Ras, Z.W., Tsay, L.-S. (eds.) Advances in Intelligent Information Systems. SCI, vol. 265, pp. 3–25. Springer, Heidelberg (2010)
Ruchkys, D.P., Song, S.W.: A parallel approximation hitting set algorithm for gene expression analysis. In: Proceedings of the 14th Symposium on Computer Architecture and High Performance Computing (SBAC-PAD 2002), pp. 75–81, Washington, DC, USA, October 2002
Satoh, K., Uno, T.: Enumerating maximal frequent sets using irredundant dualization. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 256–268. Springer, Heidelberg (2003)
Vinterbo, S., Øhrn, A.: Minimal approximate hitting sets and rule templates. Approx. Reason. 25, 123–143 (2000)
Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: Mining Itemsets that Compress. Data Min. Knowl. Discov. 23(1), 169–214 (2011)
Yang, G.: The complexity of mining maximal frequent itemsets and maximal frequent patterns. In: Proceedings of International Conference on Knowledge Discovery in Databases (KDD 2004), pp. 344–353, Seattle, WA, USA (2004)
Zhu, F., Yan, X., Han, J., Yu, P.S., Cheng, H.: Mining colossal frequent patterns by core pattern fusion. In: Proceedings of the 23rd International Conference on Data Engineering (ICDE 2007), pp. 706–715, Istanbul, Turkey, April 2007
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Durand, N., Quafafou, M. (2016). Frequent Itemset Border Approximation by Dualization. In: Hameurlain, A., Küng, J., Wagner, R., Bellatreche, L., Mohania, M. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXVI. Lecture Notes in Computer Science(), vol 9670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49784-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-662-49784-5_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49783-8
Online ISBN: 978-3-662-49784-5
eBook Packages: Computer ScienceComputer Science (R0)