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Abstract. Leveraging Business Process Management (BPM) is key to enabling
business agility in organizations. Video analysis is a nascent technology that
allows for innovative sensing and understanding of a large family of tasks across
many diverse application domains. This includes interactions between persons,
objects, and the environment in domains such as Healthcare and Retail, as well
as more general activities (e.g., in video-surveillance or Transportation). It can,
therefore, enable better BPM by giving the opportunity to augment, comple-
ment, and improve the observation, description, monitoring, triggering, and
execution of a broad array of tasks, including new ones that can only be
described visually. This may be of particular interests in cyber-physical systems
where interactions between human agents and artificial agents can be tracked
and managed in the context of various business processes. This paper proposes a
way to integrate video data and analysis into the control flow of business pro-
cesses, in a way that enables the seamless augmentation of business process
execution with information from the observable environment.
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1 Introduction and Overview

Cameras are now ubiquitous in public spaces, industrial sites, and workspaces (e.g.,
warehouses). However, their capabilities are currently exploited through human vision
only. This results in an underuse of the information provided by cameras, as they
cannot be easily integrated into existing BPM suites. We propose to leverage Com-
puter Vision (CV) techniques in order to automatically transform visual data into
actionable data for BPM.

Our approach allows modelling the vocabulary (visual concepts) and grammar
(interactions) needed to represent complex processes by composition. This allows the
re-use of component models (e.g., pedestrian detectors), composition rules (e.g.,
spatio-temporal relations), and training data across domains. This also enables business
agility, as new business processes (BPs) can be easily modelled by reusing visual
components of other processes.

We also propose a specific model management approach to bridge the gap between
the yet unconnected worlds of video analysis and BPM. This allows business experts to
leverage CV technology for BPM, without the need for a CV expert or laborious
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manual description. We also investigate the impact of the uncertainty associated to
video-based observations in BPM.

To the best of our knowledge, integrating automatic video analysis in BPM plat-
forms is a novel concept with a broad interest. In today’s state-of-the-art BPM envi-
ronments, if one wanted to add computer vision capabilities, one would need to
manually create all the connecting glue to integrate with some computer vision soft-
ware and most importantly manually collect CV training sets for the specific events of
interest in a specific context. For instance, a parking management business process that
includes visual occupancy monitoring would require: (i) the collection of video data
from each camera in each specific parking lot, (ii) a manual video labelling stage in
order to build a per-camera (and per-parking lot) training dataset, (iii) a per-dataset
learning phase to get per-camera individual visual models (e.g., by relying on
scene-specific background subtraction). This type of effort would then be repeated each
time new computer vision support is needed (for instance to monitor different visual
events), and in each context (e.g., on-street vs. off-street parking). This approach is not
scalable, neither in terms of cost (acquiring and labelling data is expensive and
infeasible for each additional modelled event), nor in terms of usability (due to the
re-designing from scratch of every new event model).

Our approach is different in that it entails a modular CV engine where various
patterns are individually described and can be composed on-the-fly for any (BP). To do
so, we propose composition mechanisms accessible through APIs that are automati-
cally employed by specific BPM elements. While some off-line pre-training still needs
to be performed in order to enable the detection of generic patterns, the modularity of
our method allows for the reuse and combination of any number of patterns to model
arbitrary events. Furthermore, our approach significantly simplifies the usage in BPM,
by reducing it to selecting CV elements and making simple parameter choices in their
properties. In the previous example, our approach would rely on generic pre-trained car
detectors (e.g., on the KITTI dataset [1]), reusing them across cameras and parking lots
(or other contexts), in order to meet different business process needs (e.g., occupancy
measurement, entry-exit monitoring, or even different applications such as lane
enforcement). Similarly, this generic pattern detection approach could be applied to a
healthcare cyber-physical system where we might have human agents such as patients,
nurses and doctors in explicit and implicit interactions with artificial agents such as
video cameras, personnel and patient badges or medical monitoring equipment.
Computer vision elements could then be used to detect and track such agents and
interaction patterns. Their detection could be based on pre-trained atomic elements
such as person detectors and then parameterised as part of their usage with information
such as uniform colour, badge detection and others. Such CV elements could make first
class citizens in processes such as reactive optimization of patient treatment depending
on personnel and equipment availability, patient arrivals and other observable prop-
erties of the environment. Other types of processes that could benefit from such ele-
ments include room preparation and allocation, equipment management (to ensure
availability at each floor for instance) or tool preparation and regulatory compliance in
operating rooms.
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2 Architectural Details

We propose a practical system composed of several components and interface mech-
anisms for bridging BPM and CV listed below and illustrated in Fig. 1.

• A modelling environment for designing business processes that natively interface
with CV capabilities (VEPE: Vision Enabled Process Environment). This com-
prises specific language extensions and BPM-type modelling support for bringing
CV capabilities into business process design.

• A generation component (GEM) that takes process designs created in the VEPE
and creates plain executable business process design models in a language under-
stood by commercial off the shelf (COTS) BPM Suites. We target BPMN 2.0 here,
as it is the most common standard BP design language. These generated models
may include extensions added to the plain language elements using extensibility
mechanisms of the standard process languages (BPMN 2 provides extension points
for its elements).

• An enhanced BPM engine (BPME) for interfacing with CV capabilities at runtime
when BPs execute. This engine will be an extension of COTS BPM engines that
supports any extensions to the plain BP design models generated by the GEM.

Fig. 1. Overall architecture
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• A CV Engine (CVE) using a modular approach that employs the expressivity and
modularity required for interfacing with BPM elements. The CVE provides an API
that the BPME uses to leverage the CV capabilities.

The process designer would create a BP diagram in the VEPE, which will have
palettes of standard BP elements as well as CV-enabled elements. In Fig. 1 the starting
element is a vision-event-based start, with some of the tasks as well as the gateway also
vision-based. Task 2 is the only one not vision-based in this example, to illustrate the
mix of plain BP elements with CV elements. The system would use the GEM to first
translate this language into standard BPMN that is enriched with extensions that pertain
to the appropriate CV extensions. These extensions are markers for API usage in the
engine, with properties attached that correspond to API parameters. This generated
model would also contain specific patterns automatically added in order to accom-
modate the uncertainty of the various CV events (in this example, a simple gateway
checking for the confidence level and deciding whether to involve a human validation
step or not). Lastly the generated process is deployed onto the BPME engine, which
would employ the CVE for all tasks that require CV functionality by interpreting the
markers and thus translating process semantics into CV operations.

2.1 VEPE and Language Extensions

In typical BPM solutions, once BPs are designed and configured with enterprise
resources (people, roles, services etc.) they are executed and monitored by a BPM
engine. The VEPE modelling environment could be a stand-alone process editor or it
could be built on top of existing modelling environments such as the open source
Eclipse BPMN 2.0 Modeller [2] or indeed any other graphical process editor based on
Eclipse Modelling Framework (EMF) [3]. This includes a large variety of industry
leading business process studios from IBM, Tibco, SAP, Oracle and others. If VEPE
were designed as a stand-alone editor, it would have just enough basic process design
functionality to cover the structural elements of normal process design and the needs of
CV-based processes. The assumption with this approach would be that most of the
business functionality that is not CV centric would then be enriched in a standard BPM
editor at a later stage, after the GEM generation of the BPMN.

If VEPE is designed as an extra layer on top of existing process environments, it
can add specific support for designing the CV processes in the form of additional
dedicated tool palettes containing the vision elements, property sheets and configura-
tion panels for the specification of the various parameters required by the CV elements,
as well as any other graphical support necessary to highlight and differentiate such
elements from standard BPM elements. Additionally, a specific decorator for CV could
be enabled which, when applied to any supported BP elements would transform it into
a CV element (e.g. by dragging and dropping a camera icon onto a BP task). In this
case, the GEM would either run in the background, constantly translating the vision
elements into BPM elements or would run when the model is saved for instance or any
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other chosen moments (similar to how a spell-checker could either be used as you type
or when you specifically choose to execute it).

Language extensions are required in order to support the definition of BPs that use
CV capabilities. The GEM would use them in the generation phase. Creating such
language extensions may imply definition of new elements or extending and cus-
tomizing existing elements. We consider BPMN 2.0 our main target in terms of
extensions, as it is by far the most widely used BP design language, supported by most
industry-leading solutions. It has basic extension capabilities that allow the enrichment
of standard elements with a variety of options. Where such extension capabilities do
not suffice, new elements can be introduced. The additional elements and the exten-
sions to the existing elements need to be supported by the BPME.

2.2 BPME

The contribution presented in this paper does not aim to replace existing BPM engines
but rather to leverage them through strategic extensions. For open source engines such
as Stardust [4], Bonita [5] and others, extensions are relatively straightforward to
implement as the code is readily available. For proprietary solutions, extensions can be
added through special agreements with the vendors or indeed through specific APIs. In
fact it is possible that any extensions required for CV be implemented as specific types
of BPMN Service Tasks prefilled with appropriate data.

Adding the extensions would involve adding connectivity to the CV Engine using
its APIs in one of two ways: The first option involves natively supporting them,
meaning they would be first class elements of the engine (this would only be necessary
for extensions that the GEM cannot map to standard BPMN). A simple option for most
of the extensions would involve the intermediate transformation operation in which the
BPs expressed with language extensions would first be converted by the GEM to a
more classical form of BP descriptions before being executed by the engine. For
instance in this case the CV Task would first be converted into a normal BPMN Task
with prefilled specific parameters and the engine would execute it as a normal Task, by
simply calling a web service that would be provided by the CV Engine. This can be
achieved through a BPMN Service Task prefilled with web service information that
points to a specific web service that acts as a façade to the CVE. More likely, a
combination of the two options would be used, where a GEM transformation will
generate an almost-classical BP process and the BPM engine will have minimal
extensions to support very specific CV operations.

2.3 CVE and Uncertainty

The Computer Vision Engine provides the execution support for CV-enabled BPs. Its
functionality can be divided in three main parts: native support for a video domain-
specific language (VDSL) by allowing the specification of composite actions, patterns
and associated queries using the elements specified in the VDSL definition; call-back
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functionality for triggering actions in a BP when certain events are detected; allowing
the specification of rules in the observed scenes (to be then used for detecting con-
formance, compliance, and raising alerts).

A specific challenge of integrating CV capabilities in BPM relates to the inherent
uncertainty that CV algorithms entail. Detecting an event in a video stream comes with
an associated confidence level so the BPs need to account for that. For instance if the
system if 99 % certain that a certain event was detected, we can consider that the risks
that this is wrong are minimal and therefore the process can assume it’s true. For a
lower value (e.g. 80 %), the BP might need to have additional logic in order to deal
with the lack of certainty, for instance by executing additional tasks by a human
supervisor to double-check the data. Such handling may even depend on the nature of
the task (for instance critical tasks may need a higher degree of certainty than others
and in some cases a human may need to be briefly involved all the time for targeted
double-checking of certain visual sequences). For the purpose of this contribution we
take a simplified approach and provide a threshold-based pattern where humans only
need to be involved in cases of lower confidence of video detection operations. Other
more complex patterns can be used and added to the system as plugins to the GEM that
will drive the specific generation of the confidence-handling elements.

3 Language Extensions

As described in Sect. 2.1, a number of new elements specific to CV need to be made
available to process designers using the VEPE.

These elements are either available in a palette or they can be generated by adding
the CV decorator (camera icon) onto existing standard BPMN elements. Regardless of
how they are created, these elements have embedded CV semantics that will ensure
their correct execution by the BPME using the CVE. Figure 2 lists a number of such
elements showing the CV element, its icon, the BPMN counterpart and API usage
indicator, pointing to the possible API that could be leveraged to achieve the required
functionality. More elements could naturally be made available however in this con-
tribution we do not aim to provide an exhaustive list of all possible implementations,
rather to show that this approach can be achieved using existing technologies and
standards. For most of the elements, the BPMN counterpart is an element as well,
however the CV Task mapping to a complex pattern illustrates the variety of mappings
that can be used. Once the mappings are decided, they need to be stored in a way that
can be leveraged by the GEM, as the GEM will ultimately use this information when
generating BPMN from CV process designs.

It is important to note that the GEM functionality can be achieved using existing
technologies such as EMF approaches for model to model transformations. Even
elements that are not specifically created as extensions for CV process design can still
benefit from CV input. For instance, role assignment to a process or a task could benefit
from compliance checking if the CVE has the capability to discern between various
subjects in a scene.
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4 Computer Vision Engine (CVE)

After generating a vision-extended business process model, a BPM execution engine
can leverage the visual information available from cameras by querying a Computer
Vision Engine (CVE). We first describe the internal components of the CVE, based on
a Video Domain-Specific Language. Consequently, we provide the external API of the
CVE used to formulate queries from the BPM execution engine.

Fig. 2. Language extensions
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4.1 Video Domain-Specific Language (VDSL) Elements

The diagram in Fig. 3 illustrates the different elements of our proposed VDSL. It
organizes visual concepts in different entity (the vocabulary) and relation categories
(the grammar) depending on their functional roles, their semantic, and their depen-
dency on data. The first category pertains to relations applicable to visual concepts.
Geometrical transforms (such as translation, scaling, rotation…) can be measured via
image matching and optical flow estimation techniques. They are needed to describe
the motion of objects and to reason about the dynamics of a scene. Pairwise spatio-
temporal relations describe spatio-temporal arrangements between visual entities. They
are required to reason about interactions, but also to represent the relative evolution of
the different components of a process. Note that these generic rules (geometrical and
spatio-temporal) are formalized a priori. Finally, similarities are measures of visual
relatedness according to different predefined visual features (e.g., colours).

The second set of VDSL elements we define are patterns. This abstraction unifies
low-level visual concepts such as actions, objects, attributes, and scenes, which are
visually detectable. Actions are the verbs in our VDSL, and are modelled using motion
features. Objects are nouns modelled by appearance (e.g., via edges, shape, parts…).
Note that although this includes “persons”, this important category of objects requires
separate treatment in the internals of the CVE. Attributes are adjectives corresponding to
visual properties (such as colour or texture). Scenes are semantic location units (e.g., sky,
road…). Patterns are data-driven concepts: their underlying visual detectors need to be
trained on visual examples. Note that some patterns are generic (e.g., persons, vehicles,
colours, atomic motions…), and can therefore be pre-trained in a generic fashion in order
to allow for immediate re-use across a variety of domains. Domain-specific patterns need,
however, to be defined by user-provided examples. The number of such examples can be
fairly low in practice, depending on the specificity of the pattern (e.g., as low as one for
near-duplicate detection via template matching) and on the availability of weakly or
unlabelled data (e.g., when using semi-supervised learning approaches). The third

Fig. 3. Video domain specific language elements
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element in our VDSL is events. They formalize the high-level visual phenomena that the
CVE is asked to observe and report about according to a query from the BPME. In
contrast to patterns, models of events cannot be cost-effectively learned from
user-provided examples. Events are indeed defined at runtime by particular query from
the BPME. Therefore, we propose to handle both the specificity and complexity of
queried events by composition. We detail in the following our approach to modelling at
query time an event from the aforementioned elements of our VDSL.

4.2 CVE API

The BPME formulates queries to the CVE using the API summarised below.
A Context object holds a specific configuration of a set of cameras and their related

information. It also incorporates constraints via a set of constraints from the BPME
(e.g., to interact with signals from other parts of the BP). The API allows filtering of the
video streams processed (for instance to limit cameras to certain locations).

Context = {CameraInfo[] cis, BPConstraints[] bpls}
Context getContext(CameraFilter[] cfs, BPConstraints[]

bpcs)

Pattern objects are detectable visual entities. They are accessible via:

PatternType = Enum{Action, Object, Attribute, Scene}
Pattern = {PatternType pt, SpatioTemporalExtent ste, Confi-

dence c}
Pattern[] getPatterns(Context ctx, PatternFilter[] pfs)

The available patterns (actions, objects, attributes, and scenes) are the ones for
which the CVE has a pre-trained detector. Note that these detectors might be coupled in
practice (multi-label detectors) in order to mutualize the cost of search for related
patterns (e.g., objects that rely on the same underlying visual features). The pattern
filter and context arguments allow searches for patterns verifying certain conditions.

Relations describe the interactions between two patterns:

RelationType = Enum{Geometry, Space, Time, Similarity}
Relation = {RelationType rt, RelationParameter[] rps, Con-

fidence c}
Relation[] getRelations(Pattern p1, Pattern p2)

The Geometry, Space, Time, and Similarity relation types correspond
respectively to a list of predetermined geometrical transformations (e.g., translation,
rotation, affine, homography), spatial relations (above, below, next to, left to…),
temporal relations (as defined in Allen’s temporal logic), and visual similarities (e.g.,
according to different pre-determined features) [6]. Note that these relations are defined
a priori with fixed parametric forms. Their parameters can be estimated directly from
the information of two patterns.

Events allow to hierarchically compose patterns and relations in order to create
arbitrarily complex models of visual phenomena, e.g., groups of patterns with complex
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time evolving structures. Events are internally represented as directed multi-graphs
where nodes are patterns and directed edges are relations. Two nodes can have multiple
edges, for instance both a temporal and a spatial relation. Events are initialized from a
context, and built incrementally by adding relations between patterns.

Event createEvent (Context ctx)
Event addEventComponent (
Event e, Pattern p1, int id1, Pattern p2, int id2, Relation[]

rs)
(add two pattern nodes with specified IDs and relations to the

event)
CallbackStatus startEventMonitor(Event e)
(instruct the CVE to send notifications each time an event

happens)
stopEventMonitor(Event e)

5 Related Work

To the best of our knowledge, while there is a plethora of work around data-centric
BPM [7] and context-aware processes (e.g. [8]), there has been no systematic approach
to integrating BPM with CV. This is very likely due to the major challenges in BPM
itself that have steadily been tackled by the community over the past few years and the
typical approach taken in CV by tackling each new problem with one application.

In CV, event detection has been investigated extensively and multiple research
directions to event modelling emerged [9]. Traditionally, events have been represented
and recognized holistically. This involved the global classification of (pre-segmented)
video clips [10]. However, understanding events that involve complex activities (e.g.,
human interactions, sports, street scenes, etc.) requires reasoning about the spatio-
temporal “structure” of the event, including interaction between agents and objects. To
enable such reasoning, part-based methods were proposed. These methods typically
define an event in terms of event primitives and their space-time relations. Two different
mechanisms to discover these primitives are common in the literature. On the one hand,
primitives are often pre-defined by hand and their space-time relationships are either
learned or manually configured [11, 12]. Other approaches go further and learn the event
primitives from data [13, 14]. The third and most recent line of research represents events
using attributes bymaking use of libraries of reusable high-level semantic concepts [15].
Continuing this line of research, current trends are towards leveraging knowledge bases
for high-level reasoning [16]. Existing methods to event detection learn event-specific
representations from a vast pool of training data. Hence, the availability of training data is
critical for these approaches and is often the major bottleneck to their generalization
capability. In contrast, here we reuse generic visual elements from our VDSL across
events by interfacing with a BPM execution engine.
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6 Summary and Conclusion

This paper presents an approach to integrate computer vision capabilities in BPM in a
modular, composable and generic way. It proposes a Vision Enabled Process Envi-
ronment that allows new CV elements to be added to the BPM standard languages as
well as graphical modelling tools for designing with CV elements. The approach also
entails a model generation system for attaching these CV entities into BPMN 2 or other
process description and execution languages. Importantly, the user does not need to
program the connection between the BPMS and CV, instead, they simply select to use
CV-enabled elements in their BPs, the connections being generated. The execution
support is provided by an extended BPM engine that executes the generated processes.
This support can be readily applied to any BPMS that uses an extensible standard such
as BPMN, or to any engine that has extension points. It can also be added to BPM
engines through partnerships with the respective vendors. Lastly, the CV engine
supports the VDSL and provides the API used by the engine to leverage the visual
information available from cameras in a modular way.

We have started the implementation of this approach using a mix of domain-
specific modelling environments, open source BPMS and computer vision libraries
developed in house. We believe that this work has great potential to bring added value
to enterprise business processes in a cost-effective way by bridging process design and
execution with visual information through modular computer vision capabilities.
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