Skip to main content

CogniMeter: EEG-Based Brain States Monitoring

  • Chapter
  • First Online:
Transactions on Computational Science XXVIII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 9590))

Abstract

Electroencephalogram (EEG) techniques are traditionally used in the medical field. Recent research work focuses on applying these techniques to daily life with wireless and relatively low-price EEG devices available in the market. As a result, applications such as neurofeedback training, neuromarketing, emotion, stress, mental workload recognition, etc. using EEG techniques on healthy adults have been developed. Since the EEG measures and records electrical activity in the brain, it is possible for it to reflect a person’s brain states. In this paper, we describe a novel brain computer interface called CogniMeter integrated with proposed real-time emotion, mental workload, and stress recognition algorithms. With this system, we can assess human emotions, mental workload, and stress in real time. This work can be applied as a human study tool in many fields. For example, the wellbeing of users within a system or workers in industry can be monitored to improve their protection from overly stressful workload conditions. In research, brain state monitoring can be applied in simulation scenarios during human factor study experiments. In marketing, a person’s emotional response toward products or advertisements can be studied using EEG-based brain states monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lim, C.-K.A., Chia, W.C.: Analysis of single-electrode EEG rhythms using MATLAB to elicit correlation with cognitive stress. Int. J. Comput. Theor. Eng. 7, 149–155 (2015)

    Article  Google Scholar 

  2. Hosseini, S.A., Khalilzadeh, M.A., Naghibi-Sistani, M.B., Niazmand, V.: Higher order spectra analysis of EEG signals in emotional stress states. In: 2010 Second International Conference on Information Technology and Computer Science (ITCS), pp. 60–63 (2010)

    Google Scholar 

  3. Yuan-Pin, L., Chi-Hong, W., Tien-Lin, W., Shyh-Kang, J., Jyh-Horng, C.: EEG-based emotion recognition in music listening: a comparison of schemes for multiclass support vector machine. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 489–492 (2009)

    Google Scholar 

  4. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004)

    Article  Google Scholar 

  5. Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M.: Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 13 (2011)

    Article  Google Scholar 

  6. Aguera, P.-E., Jerbi, K., Caclin, A., Bertrand, O.: ELAN: a software package for analysis and visualization of MEG, EEG, and LFP signals. Comput. Intell. Neurosci. 2011, 5 (2011)

    Article  Google Scholar 

  7. Sourina, O., Wang, Q., Liu, Y., Nguyen, M.: Fractal-based brain state recognition from EEG in human computer interaction. Biomed. Eng. Syst. Technol. 273, 258–272 (2013)

    Article  Google Scholar 

  8. Muller, K.-R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., Blankertz, B.: Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring. J. Neurosci. Methods 167, 82–90 (2008)

    Article  Google Scholar 

  9. Weiland, M.Z., Roberts, D.M., Fine, M.S., Caywood, M.S.: Real time research methods: monitoring air traffic controller workload during simulation studies using electroencephalography (EEG). In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 1615–1619 (2013)

    Google Scholar 

  10. Mehrabian, A.: Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Curr. Psychol. 14(4), 261–292 (1996)

    Article  MathSciNet  Google Scholar 

  11. Mauss, I.B., Robinson, M.D.: Measures of emotion: a review. Cogn. Emot. 23, 209–237 (2009)

    Article  Google Scholar 

  12. Takahashi, K.: Remarks on emotion recognition from multi-modal bio-potential signals. In: IEEE International Conference on Industrial Technology (IEEE ICIT 2004), vol. 3, pp. 1138–1143 (2004)

    Google Scholar 

  13. Schaaff, K.: EEG-based emotion recognition. Diplomarbeit am Institut fur Algorithmen und Kognitive Systeme, Universitat Karlsruhe (TH) (2008)

    Google Scholar 

  14. Pradhan, N., Dutt, D.N.: Use of running fractal dimension for the analysis of changing patterns in electroencephalograms. Comput. Biol. Med. 23, 381–388 (1993)

    Article  Google Scholar 

  15. Lutzenberger, W., Elbert, T., Birbaumer, N., Ray, W.J., Schupp, H.: The scalp distribution of the fractal dimension of the EEG and its variation with mental tasks. Brain Topogr. 5, 27–34 (1992)

    Article  Google Scholar 

  16. Liu, Y., Sourina, O.: Real-time subject-dependent EEG-based emotion recognition algorithm. In: Gavrilova, M.L., Tan, C.J.K., Mao, X., Hong, L. (eds.) Transactions on Computational Science XXIII. LNCS, vol. 8490, pp. 199–223. Springer, Heidelberg (2014)

    Google Scholar 

  17. Hart, S., Staveland, L.: Development of a multi-dimensional workload rating scale: results of empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload (1988)

    Google Scholar 

  18. Waard, D., Studiecentrum, V.: The measurement of drivers’ mental workload. Groningen University, Traffic Research Center (1996)

    Google Scholar 

  19. Sweller, J.: Cognitive load during problem solving: effects on learning. Cogn. Sci. 12, 257–285 (1988)

    Article  Google Scholar 

  20. Sammer, G., Blecker, C., Gebhardt, H., Bischoff, M., Stark, R., Morgen, K., Vaitl, D.: Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmetic-induced workload. Hum. Brain Mapp. 28, 793–803 (2007)

    Article  Google Scholar 

  21. Lei, S., Roetting, M.: Influence of task combination on EEG spectrum modulation for driver workload estimation. Hum. Factors J. Hum. Factors Ergon. Soc. 53, 168–179 (2011)

    Article  Google Scholar 

  22. Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., Babiloni, F.: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 44, 58–75 (2014)

    Article  Google Scholar 

  23. Khosrowabadi, R., Chai, Q., Kai Keng, A., Sau Wai, T., Heijnen, M.: A brain-computer interface for classifying EEG correlates of chronic mental stress. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 757–762 (2011)

    Google Scholar 

  24. Calibo, T.K., Blanco, J.A., Firebaugh, S.L.: Cognitive stress recognition. In: 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1471–1475 (2013)

    Google Scholar 

  25. Hassellund, S.S., Flaa, A., Sandvik, L., Kjeldsen, S.E., Rostrup, M.: Long-term stability of cardiovascular and catecholamine responses to stress tests: an 18-year follow-up study. Hypertension 55, 131–136 (2010)

    Article  Google Scholar 

  26. Ssanghee, S., Yeongjun, G., Jungtae, L.: The relation between affective style of stressor on EEG asymmetry and stress scale during multimodal task. In: Third International Conference on Convergence and Hybrid Information Technology, ICCIT 2008, pp. 461–466 (2008)

    Google Scholar 

  27. Jacobs, S.C., Friedman, R., Parker, J.D., Tofler, G.H., Jimenez, A.H., Muller, J.E., Benson, H., Stone, P.H.: Use of skin conductance changes during mental stress testing as an index of autonomic arousal in cardiovascular research. Am. Heart J. 128, 1170–1177 (1994)

    Article  Google Scholar 

  28. The Emotiv EEG device. http://www.emotiv.com/eeg/features.php

  29. Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 31, 277–283 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, Q., Sourina, O.: Real-time mental arithmetic task recognition from EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 225–232 (2013)

    Article  Google Scholar 

  31. Wang, Q., Sourina, O., Nguyen, M.: Fractal dimension based neurofeedback in serious games. Vis. Comput. 27, 299–309 (2011)

    Article  Google Scholar 

  32. Liu, Y., Sourina, O.: EEG databases for emotion recognition. In: 2013 International Conference on Cyberworlds (CW2013), pp. 302–309 (2013)

    Google Scholar 

  33. Lan, Z., Sourina, O., Wang, L., Liu, Y.: Real-time EEG-based emotion monitoring using stable features. Vis. Comput. 32, 347–358 (2016)

    Article  Google Scholar 

  34. Bradley, M.M., Lang, P.J.: The International Affective Digitized Sounds (IADS-2): affective ratings of sounds and instruction manual. University of Florida, Gainesville, FL, Technical report B-3 (2007)

    Google Scholar 

  35. Lang, P., Bradley, M.M.: The International Affective Picture System (IAPS) in the study of emotion and attention. In: Handbook of Emotion Elicitation and Assessment, vol. 29 (2007)

    Google Scholar 

  36. Tulen, J., Moleman, P., van Steenis, H., Boomsma, F.: Characterization of stress reactions to the Stroop color word test. Pharmacol. Biochem. Behav. 32, 9–15 (1989)

    Article  Google Scholar 

  37. Hou, X., Liu, Y., Sourina, O., Tan, E., Wang, L., Mueller-Wittig, W.: EEG based stress monitoring. In: IEEE International Conference on in Systems, Man and Cybernetics (SMC), pp. 3110–3115 (2015)

    Google Scholar 

  38. Lim, W.L., Sourina, O., Wang, L., Liu, Y.: EEG-based mental workload recognition related to multitasking. In: 10th International Conference on Information, Communications and Signal Processing (ICICS), (2015, in press)

    Google Scholar 

  39. Lan, Z., Liu, Y., Sourina, O., Wang, L.: Real-time EEG-based user’s valence monitoring. In: Internation Conference on Information, Communications and Signal Processing (ICICS), pp. 1–5, 2–4 December 2015

    Google Scholar 

  40. Hou, X., Liu, Y., Sourina, O., Mueller-Wittig, W.: CogniMeter: EEG-based emotion, mental workload and stress visual monitoring. In: International Conference on Cyberworlds (CW), pp. 153–160 (2015)

    Google Scholar 

  41. JustGage. http://justgage.com

  42. CanvasJS. http://canvasjs.com/

Download references

Acknowledgments

The work is supported by Fraunhofer IDM@NTU, which is funded by the National Research Foundation (NRF) and managed through the multi-agency Interactive & Digital Media Programme Office (IDMPO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiyuan Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hou, X. et al. (2016). CogniMeter: EEG-Based Brain States Monitoring. In: Gavrilova, M., Tan, C., Sourin, A. (eds) Transactions on Computational Science XXVIII. Lecture Notes in Computer Science(), vol 9590. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53090-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53090-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53089-4

  • Online ISBN: 978-3-662-53090-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics