## Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

## Editorial Board

David Hutchison
Lancaster University, Lancaster, UK
Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler
University of Surrey, Guildford, UK
Jon M. Kleinberg
Cornell University, Ithaca, NY, USA
Friedemann Mattern
ETH Zurich, Zürich, Switzerland
John C. Mitchell
Stanford University, Stanford, CA, USA
Moni Naor
Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen
TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos
University of California, Los Angeles, CA, USA
Doug Tygar
University of California, Berkeley, CA, USA

## Gerhard Weikum

Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Srečko Brlek • Christophe Reutenauer (Eds.)

# Developments in Language Theory 

20th International Conference, DLT 2016 Montréal, Canada, July 25-28, 2016 Proceedings

Springer

Editors
Srečko Brlek
Université du Québec à Montréal
Montreal, QC
Canada

Christophe Reutenauer<br>Département de mathématiques<br>Université du Québec à Montréal<br>Montreal, QC<br>Canada

ISSN 0302-9743
ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53131-0
ISBN 978-3-662-53132-7 (eBook)
DOI 10.1007/978-3-662-53132-7
Library of Congress Control Number: 2016946010
LNCS Sublibrary: SL1 - Theoretical Computer Science and General Issues
© Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

## Preface

The DLT 2016 Conference was organized by the Laboratoire de Combinatoire et d'Informatique mathématique (LaCIM) during July 25-28, 2016. It was the 20th edition of a series initiated in 1993 by G. Rozenberg and A. Salomaa in Turku (Finland). These conferences took place every odd year in the first editions: Magdeburg, Germany (1995), Thessaloniki, Greece (1997), Aachen, Germany (1999), and Vienna, Austria (2001). Since then, the event was held in Europe on every odd year and outside Europe on every even year. The locations of DLT conferences since 2002 have been: Kyoto, Japan (2002), Szeged, Hungary (2003), Auckland, New Zealand (2004), Palermo, Italy (2005), Santa Barbara, California, USA (2006), Turku, Finland (2007), Kyoto, Japan (2008), Stuttgart, Germany (2009), London, Ontario, Canada (2010), Milan, Italy (2011), Taipei, Taiwan (2012), Marne-la-Vallée, France (2013), Ekaterinburg, Russia (2014), Liverpool (2015).

This series of International Conferences on Developments in Language Theory provides a forum for presenting current developments in formal languages and automata. Its scope is very general and includes, among others, the following topics and areas: combinatorial and algebraic properties of words and languages; grammars, acceptors and transducers for strings, trees, graphs, arrays; algebraic theories for automata and languages; codes; efficient text algorithms; symbolic dynamics; decision problems; relationships to complexity theory and logic; picture description and analysis; polyominoes and bidimensional patterns; cryptography; concurrency; cellular automata; bio-inspired computing; quantum computing.

This volume of Lecture Notes in Computer Science contains the papers that were presented at DLT 2016. There were 48 submissions and each of them was reviewed by at least three reviewers. The selection process was undertaken by the Program Committee with the help of generous reviewers who accepted to participate in the selection of 32 papers within a tight schedule. The present volume also includes the abstracts of the lectures given by four invited speakers

- Valérie Berthé: "Tree Sets: From Bifix Codes to Algebraic Word Combinatorics"
- Emilie Charlier: "Permutations and Shifts"
- Cédric Chauve: "Counting, Generating, and Sampling Tree Alignments"
- Janusz A. (John) Brzozowski: "Towards a Theory of Complexity for Regular Languages"

We warmly thank Valérie, Émilie, Cédric, and Janusz for delivering sound lectures intended for a large audience. We take this opportunity to thank all authors for their submissions and the anonymous reviewers who provided numerous and constructive reviews that led to the selection of high-standard contributions.

Special thanks are due to Alfred Hofmann and the Lecture Notes in Computer Science team at Springer for having granted us the opportunity to publish this special issue devoted to DLT 2016 and for their help during the final stages.

The organization of DLT 2016 benefited from the support of the Centre de Recherches Mathématiques (CRM) and the Canadian Research Chair in Algebra, Combinatorics and Computer Science. The reviewing process was facilitated by the EasyChair conference system created by Andrei Voronkov.

Finally, we were fortunate to have a number of collaborators who contributed to the success of the conference: the secretary Johanne Patoine, our postdoctoral fellows Mathieu Guay-Paquet and Nathan Williams, our students Mélodie Lapointe, Nadia Lafrenière, and Hugo Tremblay. Our warmest thanks for their invaluable assistance and contribution in the organization of the event.

June 2016
Srečko Brlek
Christophe Reutenauer

## Organization

## Steering Committee

Marie-Pierre Béal
Cristian S. Calude
Volker Diekert
Juraj Hromkovic
Oscar H. Ibarra
Masami Ito
Natasha Jonoska
Juhani Karhumäki (Chair)
Martin Kutrib
Michel Rigo
Antonio Restivo
Grzegorz Rozenberg

## Program Committee

Srečko Brlek (Chair)
Christophe Reutenauer (Co-chair)
Olivier Carton
Manfred Droste
Vesa Halava
Lila Kari
Gregory Kucherov
Edita Pelantová
Jean-Éric Pin
Igor Potapov
Daniel Reidenbach
Michel Rigo
Marinella Sciortino
Jeffrey Shallit
Mikhail Volkov

Université Paris-Est-Marne-la-Vallée, France
University of Auckland, New Zealand
University of Stuttgart, Germany
ETH Zürich, Switzerland
UCSB, Santa Barbara, USA
Kyoto Sangyo University, Japan
University of South Florida, USA
Turku University, Finland
University of Giessen, Germany
University of Liege, Belgium
University of Palermo, Italy
Leiden Institute of Advanced Computer Science, The Netherlands

## Organizing Committee

Alexandre Blondin Massé<br>LaCIM, Canada<br>(Chair)<br>Srečko Brlek (Co-chair) LaCIM, Canada

| Mathieu Guay-Paquet | LaCIM, Canada |
| :--- | :--- |
| Nadia Lafrenière | LaCIM, Canada |
| Mélodie Lapointe | LaCIM, Canada |
| Christophe Reutenauer | LaCIM, Canada |
| Hugo Tremblay | LaCIM, Canada |
| Nathan Williams | LaCIM, Canada |

## Additional Reviewers

A.V. Sreejith

Aleksi Saarela
Alessandra Cherubini
Alexander Meduna
Alexander Okhotin
Andreas Maletti
Antoine Durand-Gasselin
Antoine Meyer
Antonio Restivo
Arnaud Carayol
Arturo Carpi
Benjamin Monmege
Bernard Boigelot
Christof Löding
Christophe Reutenauer
Damien Jamet
Damián López
Daniel Reidenbach
Dominik D.
Freydenberger
Edita Pelantova
Elena Pribavkina
Florin Manea
Frantisek Mraz
Gabriele Fici
Giovanni Pighizzini
Gregory Kucherov
Igor Potapov

Jacques Duparc
Jarkko Kari
Jarkko Peltomäki
Jean-Éric Pin
Joel Day
Julien Cassaigne
Karel Klouda
Laure Daviaud
Luca Breveglieri
Luigi Santocanale
Manfred Droste
Manfred Kufleitner
Marc Zeitoun
Marinella Sciortino
Markus Holzer
Markus Lohrey
Markus Whiteland
Mathieu Guay-Paquet
Maxime Crochemore
Michael Rao
Michal Kunc
Michel Rigo
Mika Hirvensalo
Narad Rampersad
Nathan Williams
Nils Jansen
Pascal Weil
Paul Bell

Paul Gastin
Pavel Semukhin
Petr Jancar
Philippe Schnoebelen
Pierre McKenzie
Reino Niskanen
Robert Mercas
Roman Kolpakov
Sabrina Mantaci
Sang-Ki Ko
Sebastian Maneth
Sergey Verlan
Srečko Brlek
Stepan Holub
Sylvain Lombardy
Tero Harju
Thomas Colcombet
Thomas Place
Valérie Berthé
Vesa Halava
Violetta Lonati
Vladimir Gusev
Volker Diekert
Vít Jelínek
Wojciech Plandowski
Zoltan Fülöp
Stepán Starosta

## Abstracts of Invited Talks

# Tree Sets: From Bifix Codes to Algebraic Word Combinatorics 

Valérie Berthé<br>Université Paris-Diderot, Paris, France

Tree sets are languages defined with regard to a tree property: they are sets of factors of a family of infinite words that are defined in terms of the possible left and right extensions of their factors, with their extension graphs being trees. This class of words with linear factor complexity includes classical families such as Sturmian words, interval exchanges or else Arnoux-Rauzy words. We discuss here their combinatorial, ergodic and algebraic properties. This includes algebraic properties of their return words, and of maximal bifix codes defined with respect to their languages. This lecture is based on joint work with C. De Felice, V. Delecroix, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, G. Rindone.

# Towards a Theory of Complexity for Regular Languages 

Janusz A. (John) Brzozowski<br>University of Waterloo, Waterloo, Canada

The state complexity of a regular language is the number of states in a complete minimal deterministic finite automaton (DFA) recognizing the language. The state complexity of an operation on regular languages is the maximal state complexity of the result of the operation as a function of the state complexities of the operands. The state complexity of an operation gives a worst-case lower bound on the time and space complexity of the operation, and has been studied extensively for that reason. The first results on the state complexity of union, concatenation, Kleene star and four other less often used operations were stated without proof by Maslov in 1970, but this paper was unknown in the West for many years. In 1994, Yu, Zhuang and K. Salomaa studied the complexity of basic operations (union, intersection, concatenation, star and reversal) and provided complete proofs. Since then, many authors obtained numerous results for various subclasses of the class of regular languages, and for various operations. Moreover, other measures of complexity, including the size of the syntactic semi-group of a language, have been added. In this talk I will summarize the results obtained in the past few years in the area of complexity of regular languages and finite automata.

# Permutations and Shifts 

Émilie Charlier<br>Université de Liège, Liège, Belgique

The entropy of a symbolic dynamical system is usually defined in terms of the growth rate of the number of distinct allowed factors of length n. Bandt, Keller and Pompe showed that, for piecewise monotone interval maps, the entropy is also given by the number of permutations defined by consecutive elements in the trajectory of a point. This result was the starting point of several works of Elizalde where he investigates permutations in shift systems, notably in full shifts and in beta-shifts. The goal of this talk is to survey Elizalde's results. I will end by mentioning the case of negative beta-shifts, which has been simultaneously studied by Elizalde and Moore on the one hand, and by Steiner and myself on the other hand.

[^0]
# Counting, Generating and Sampling Tree Alignments 

Cédric Chauve<br>Simon Fraser University, Burnaby, Canada


#### Abstract

Pairwise alignment of ordered rooted trees is a natural extension of the classical pairwise sequence alignment, with applications in several fields, such as RNA secondary structure comparison for example. Motivated by this application, and the need to explore the space of possibly sub-optimal alignments, we introduce the notion of unambiguous tree alignment. We first take an enumerative combinatorics point of view and propose a decomposition scheme for unambiguous tree alignments, under the form of a context-free grammar, that leads to precise asymptotic enumerative results, by mean of basic analytic combinatorics. We then shift our focus to algorithmic questions, and show our grammar can be refined into a dynamic programming algorithm for sampling tree alignments under the Gibbs-Boltzmann probability distribution. We also provide some surprising average case complexity results on the tree alignment problem. This work, in collaboration with Yann Ponty and Julien Courtiel, illustrates the potential of considering algorithmic questions from the point of view of enumerating the solution space.


## Contents

Context-Free Ambiguity Detection Using Multi-stack Pushdown Automata. ..... 1
H.J.S. Basten
Complementation of Branching Automata for Scattered and Countable Series-Parallel Posets ..... 13
Nicolas Bedon
Cayley Automatic Groups and Numerical Characteristics of Turing Transducers ..... 26
Dmitry Berdinsky
A Perfect Class of Context-Sensitive Timed Languages ..... 38
Devendra Bhave, Vrunda Dave, S.N. Krishna, Ramchandra Phawade, and Ashutosh Trivedi
Position Automaton Construction for Regular Expressions with Intersection ..... 51
Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis
A Language-Theoretical Approach to Descriptive Complexity. ..... 64
Michaël Cadilhac, Andreas Krebs, and Klaus-Jörn Lange
$k$-Abelian Equivalence and Rationality ..... 77
Julien Cassaigne, Juhani Karhumäki, Svetlana Puzynina, and Markus A. Whiteland
Schützenberger Products in a Category ..... 89
Liang-Ting Chen and Henning Urbat
Outfix-Guided Insertion (Extended Abstract) ..... 102
Da-Jung Cho, Yo-Sub Han, Timothy Ng, and Kai Salomaa
Both Ways Rational Functions ..... 114
Christian Choffrut and Bruno Guillon
Aperiodic String Transducers ..... 125
Luc Dartois, Ismaël Jecker, and Pierre-Alain Reynier
An Automata Characterisation for Multiple Context-Free Languages ..... 138
Tobias Denkinger
Weighted Automata and Logics on Infinite Graphs ..... 151
Stefan Dück
Degrees of Infinite Words, Polynomials and Atoms ..... 164
Jörg Endrullis, Juhani Karhumäki, Jan Willem Klop, and Aleksi Saarela
Ternary Square-Free Partial Words with Many Wildcards. ..... 177
Daniil Gasnikov and Arseny M. Shur
Alternating Demon Space Is Closed Under Complement and Other Simulations for Sublogarithmic Space ..... 190
Viliam Geffert
Weighted Symbolic Automata with Data Storage ..... 203
Luisa Herrmann and Heiko Vogler
On Families of Full Trios Containing Counter Machine Languages ..... 216
Oscar H. Ibarra and Ian McQuillan
Non-regular Maximal Prefix-Free Subsets of Regular Languages ..... 229
Jozef Jirásek Jr.
Operations on Unambiguous Finite Automata ..... 243
Jozef Jirásek Jr., Galina Jirásková, and Juraj Šebej
The Trace Monoids in the Queue Monoid and in the Direct Product of Two Free Monoids ..... 256
Dietrich Kuske and Olena Prianychnykova
On Ordered RRWW-Automata ..... 268
Kent Kwee and Friedrich Otto
Bispecial Factors in the Brun S-Adic System ..... 280
Sébastien Labbé and Julien Leroy
Compositions of Tree-to-Tree Statistical Machine Translation Models ..... 293
Andreas Maletti
On the Solvability Problem for Restricted Classes of Word Equations ..... 306
Florin Manea, Dirk Nowotka, and Markus L. Schmid
Unambiguous Büchi Is Weak ..... 319
Henryk Michalewski and Michat Skrzypczak
One-Unknown Word Equations and Three-Unknown Constant-Free Word Equations ..... 332
Dirk Nowotka and Aleksi Saarela
Avoidability of Formulas with Two Variables. ..... 344
Pascal Ochem and Matthieu Rosenfeld
Deciding Equivalence of Linear Tree-to-Word Transducers in Polynomial Time. ..... 355
Adrien Boiret and Raphaela Palenta
On Finite and Polynomial Ambiguity of Weighted Tree Automata ..... 368
Erik Paul
An Extremal Series of Eulerian Synchronizing Automata ..... 380Marek Szykuła and Vojtěch Vorel
Monoid-Based Approach to the Inclusion Problem on Superdeterministic Pushdown Automata ..... 393
Yuya Uezato and Yasuhiko Minamide
Author Index ..... 407


[^0]:    A full version is available at http://dlt2016.lacim.uqam.ca/en/files/charlier.pdf.

