Skip to main content

Complementation of Branching Automata for Scattered and Countable Series-Parallel Posets

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9840))

Included in the following conference series:

  • 563 Accesses

Abstract

We prove the closure under complementation of the class of languages of scattered and countable N-free posets recognized by branching automata. The proof relies entirely on effective constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almeida, J.: Finite Semigroups and Universal Algebra. Series in Algebra, vol. 3. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  2. Bedon, N.: Logic and bounded-width rational languages of posets over countable scattered linear orderings. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 61–75. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Bedon, N.: Logic and branching automata. Log. Meth. Comput. Sci. 11(4:2), 1–38 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Bedon, N., Rispal, C.: Series-parallel languages on scattered and countable posets. Theor. Comput. Sci. 412(22), 2356–2369 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruyère, V., Carton, O.: Automata on linear orderings. J. Comput. Syst. Sci. 73(1), 1–24 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Büchi, J.R.: On a decision method in the restricted second-order arithmetic. In: Proceedings of International Congress on Logic, Methodology and Philosophy of Science, Berkeley 1960 (1962)

    Google Scholar 

  7. Büchi, J.R.: Transfinite automata recursions and weak second order theory of ordinals. In: Proceedings of International Congress on Logic, Methodology, and Philosophy of Science 1964 (1965)

    Google Scholar 

  8. Carton, O., Rispal, C.: Complementation of rational sets on countable scattered linear orderings. Int. J. Found. Comput. Sci. 16(4), 767 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colcombet, T.: Factorisation forests for infinite words and applications to countable scattered linear orderings. Theor. Comput. Sci. 411, 751–764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eilenberg, S., Schützenberger, M.P.: Rational sets in commutative monoids. J. Algebra 13(2), 173–191 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuske, D.: Infinite series-parallel posets: logic and languages. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 648–662. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Kuske, D.: Towards a language theory for infinite N-free pomsets. Theor. Comput. Sci. 299, 347–386 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lodaya, K., Weil, P.: A Kleene iteration for parallelism. In: Arvind, V., Sarukkai, S. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 355–367. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Lodaya, K., Weil, P.: Series-parallel posets: algebra, automata and languages. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 555–565. Springer, Heidelberg (1998)

    Google Scholar 

  15. Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property. Theor. Comput. Sci. 237(1–2), 347–380 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lodaya, K., Weil, P.: Rationality in algebras with a series operation. Inform. Comput. 171, 269–293 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Muller, D.E.: Infinite sequences and finite machines. In: Proceedings of Fourth Annual Symposium on Switching circuit theory and logical design. IEEE (1963)

    Google Scholar 

  18. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Am. Math. Soc. 141, 1–35 (1969)

    MathSciNet  MATH  Google Scholar 

  19. Rival, I.: Optimal linear extension by interchanging chains. Proc. AMS 89(3), 387–394 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rosenstein, J.G.: Linear Orderings. Academic Press, New York (1982)

    MATH  Google Scholar 

  21. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  22. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. SIAM J. Comput. 11, 298–313 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wilke, T.: An algebraic theory for regular languages of finite and infinite words. Int. J. Algebra Comput. 3(4), 44–489 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Bedon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bedon, N. (2016). Complementation of Branching Automata for Scattered and Countable Series-Parallel Posets. In: Brlek, S., Reutenauer, C. (eds) Developments in Language Theory. DLT 2016. Lecture Notes in Computer Science(), vol 9840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53132-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53132-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53131-0

  • Online ISBN: 978-3-662-53132-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics