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Abstract

A non-deterministic automaton running on infinite trees is unam-

biguous if it has at most one accepting run on every tree. The class
of languages recognisable by unambiguous tree automata is still not
well-understood. In particular, decidability of the problem whether
a given language is recognisable by some unambiguous automaton is
open. Moreover, there are no known upper bounds on the descrip-
tive complexity of unambiguous languages among all regular tree lan-
guages.

In this paper we show the following complexity collapse: if a non-
deterministic parity tree automaton A is unambiguous and its prior-
ities are between i and 2n then the language recognised by A is in
the class Comp(i + 1, 2n). A particular case of this theorem is for
i = n = 1: if A is an unambiguous Büchi tree automaton then L(A) is
recognisable by a weak alternating automaton (or equivalently defin-
able in weak MSO). The main motivation for this result is a theorem
by Finkel and Simonnet stating that every unambiguous Büchi au-
tomaton recognises a Borel language.

The assumptions of the presented theorem are syntactic (we re-
quire one automaton to be both unambiguous and of particular parity
index). However, to the authors’ best knowledge this is the first theo-
rem showing a collapse of the parity index that exploits the fact that
a given automaton is unambiguous.

∗This work has been supported by National Science Centre grant no. DEC-
2012/05/N/ST6/03254.
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1 Introduction

The decision method by Rabin [Rab69] for Monadic Second-Order (MSO)
logic, sometimes called the mother of all decidability results, is a widely used
tool in areas of verification and model-checking. The languages definable in
MSO logic on the full binary tree are called regular tree languages. The ro-
bustness of this class comes from the equivalence in expressive power between
automata (non-deterministic and alternating) and good closure properties.

Nevertheless the satisfaction problem is decidable for MSO on infinite
trees, many structural properties of regular tree languages are still not well-
understood. One of the reasons for that is a lack of a canonical representation
of a regular tree language. Not only there are no minimal automata for them
but also deterministic automata have strictly smaller expressive power than
the non-deterministic ones.

A natural class in-between deterministic and non-deterministic automata
is the class of unambiguous ones — an automaton is unambiguous if it has at
most one accepting run on every tree. It seems that an unambiguous automa-
ton represents the structure of the recognised language in a more rigid way
than a general non-deterministic automaton. However, as shown in [NW96],
there are ambiguous regular tree languages that cannot be recognised by
unambiguous automata.

In contrast to general regular tree languages, most of the problems are
solved in the case of deterministic automata: it is decidable whether a given
language is recognisable by a deterministic automaton [NW05], the non-
deterministic index problem is decidable [NW03,NW98], as well as the Wadge
hierarchy [Mur08].

In comparison, the class of unambiguous languages (recognisable by un-
ambiguous automata) is still a terra incognita. Not only it is unknown how to
verify whether a given regular language is unambiguous, but also there are
no upper bounds on the descriptive complexity of unambiguous languages
among all regular languages. In particular, it is open whether all unambigu-
ous languages can be recognised by alternating parity automata of a bounded
parity index.

There are only two estimations on descriptive complexity of unambiguous
languages known. Firstly, a recent result in [Hum12] shows that unambigu-
ous languages are topologically harder than deterministic ones. Secondly,
in [FS09] the authors observe by a standard descriptive set-theoretical ar-
gument, that the language recognised by an unambiguous Büchi automaton
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must be Borel. In this work we extend the latter result by showing the
following theorem.

Theorem 1.1. If A is an unambiguous automaton of parity index (i, 2n)
then the language L(A) can be recognised by an alternating Comp(i + 1, 2n)
automaton.

This theorem extends the mentioned result from [FS09] in two direc-
tions. Firstly, we show that every unambiguous Büchi automaton recognises
language that is weak MSO-definable. It is known that every regular tree
language definable in weak MSO is Borel but the converse is open. Secondly,
the theorem presented here gives a collapse also for higher priorities.

To the authors’ best knowledge this is the first work where it is shown
how to use the fact that a given automaton is unambiguous to derive upper
bounds on the parity index of the recognised language. Therefore, this work
should be treated as a first step towards descriptive complexity bounds for
unambiguous languages, and generally a better understanding of them.

One should note that in the main result of this work the unambiguous-
and-Büchi assumptions are put on one automaton. It is still possible for a
regular tree language to be both: recognised by an unambiguous automaton
and by some (other) Büchi automaton. An example of such a language is
the H-language proposed in [Hum12]: „exists a branch containing only a’s
and turning infinitely many times right”.

2 Basic notions

Our models are infinite, labelled, full binary trees. The labels come from a
finite alphabet denoted A. A tree t ∈ TrA is a function t : {L, R}∗ → A.
Vertices of a tree are denoted u, v, w ∈ {L, R}∗. The prefix-order on vertices
is denoted as ≺, the minimal element of this order is the root ǫ ∈ {L, R}∗.
The label of a tree t ∈ TrA in a vertex v is denoted as t(v) ∈ A. The subtree
of a tree t rooted in a vertex v is denoted by t ↾v. Infinite branches of a
tree are denoted as b, c ∈ {L, R}ω. We extend the prefix order to them, thus
v ≺ b if there exists k ∈ N such that v = b↾k.

A non-deterministic tree automaton A is a tuple 〈Q, q0, ∆, Ω〉 where

• Q is a finite set of states,

• q0 ∈ Q is an initial state,
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• ∆ ⊆ Q × Q × A × Q is a transition relation,

• Ω: Q → N is a priority function.

A run of an automaton A on a tree t is a tree ρ ∈ TrQ such that for every
vertex v we have

(ρ(v), ρ(vL), t(v), ρ(vR)) ∈ ∆.

A run ρ is accepting if on every branch b of the tree we have

lim sup
n→∞

Ω
(

ρ(b↾n)
)

≡ 0 mod 2.

We say that a run ρ starts from the state ρ(ǫ). The language recognised by
the given automaton (denoted L(A)) is the set of all trees t such that there
is an accepting run ρ of A on t starting from q0.

A non-deterministic automaton A is unambiguous if for every tree t there
is at most one accepting run ρ of A on t starting from q0.

An alternating tree automaton C is a tuple 〈Q, Q∃, Q∀, q0, ∆, Ω〉 where

• Q is a finite set of states,

• Q∃ ⊔ Q∀ is a partition of Q,

• q0 ∈ Q is an initial state,

• ∆ ⊆ Q × A × {ǫ, L, R} × Q is a transition relation,

• Ω: Q → N is a priority function.

For technical reasons we assume that for every q ∈ Q and a ∈ A there
is at least one transition (q, a, d, q′) ∈ ∆. We call a transition as above a
d-transition.

An alternating tree automaton C induces, for every tree t ∈ TrA, a parity
game G(C, t). The positions of this game are of the form (v, q) ∈ {L, R}∗ ×Q.
The initial position is (ǫ, q0). A position (v, q) belongs to the player ∃ if
q ∈ Q∃, otherwise (v, q) belongs to ∀. The priority of position (v, q) is Ω(q).
There is an edge between (v, q) and (vd, q′) whenever

(q, t(v), d, q′) ∈ δ.

An infinite play π in G(C, t) is winning for ∃ if the highest priority occurring
infinitely often on π is even.
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We say that an alternating tree automaton C accepts a tree t if the player
∃ has a winning strategy in G(C, t). The language of trees accepted by C is
denoted by L(C).

The parity index of a non-deterministic or alternating automaton A is
(i, j) if i is the minimal and j is the maximal priority of A. An automaton
of index (1, 2) is called a Büchi automaton.

Every alternating tree automaton can be naturally seen as a graph —
the set of nodes is Q and there is an edge (q, q′) if (q, a, d, q′) ∈ ∆ for some
a ∈ A, d ∈ {ǫ, L, R}.

We say that an alternating tree automaton D is a Comp(i, j) automaton

if every strongly connected component of the graph of D is of index (i, j) or
(i + 1, j + 1), see [AS05].

Note that an alternating automaton C is Comp(0, 0) if and only if C is a
weak alternating automaton. The following fact gives a connection between
these automata and weak MSO.

Theorem 2.1 (Rabin). If C is an alternating Comp(0, 0) automaton then

L(C) is definable in weak MSO. Similarly, if L ⊆ TrA is definable in weak

MSO then there exists an alternating Comp(0, 0) automaton recognising L.

The crucial technical tool in our proof is the following separation theorem
from [AS05].

Theorem 2.2 (Arnold, Santocanale). If A1, A2 are non-deterministic parity

tree automata of index (i, 2n) such that L(A1), L(A2) are disjoint then there

exists an alternating Comp(i + 1, 2n) automaton S such that

L(A1) ⊆ L(S) and L(A2) ∩ L(S) = ∅.

A particular case of this theorem for i = n = 1 is the classical Rabin
separation result (see [Rab70]): if L1, L2 are two disjoint Büchi tree languages
then there is a weak MSO-definable language S that separates them.

3 Main result

Theorem 1.1. If A is an unambiguous automaton of parity index (i, 2n)
then the language L(A) can be recognised by an alternating Comp(i + 1, 2n)
automaton.
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For the rest of this section we fix an automaton A as in the statement of
the theorem. Let Q be the set of states of A and A be its alphabet. We say
that a transition δ = (q, qL, a, qR) of A starts from (q, a).

We say that a pair (q, a) ∈ A × Q is productive if it appears in some
accepting run: there exists a tree t ∈ TrA and an accepting run ρ of A on t
such that ρ(ǫ) = q0 and for some vertex v we have ρ(v) = q and t(v) = a.
Note that if (q, a) is productive then there exists at least one transition
starting from (q, a).

For every transition δ = (q, qL, a, qR) of A we define Lδ as the language
of trees such that there exists an accepting run ρ of A on t that uses δ in the
root of t: ρ(ǫ) = q, ρ(L) = qL, t(ǫ) = a, and ρ(R) = qR.

Lemma 3.1. If (q, a) is productive and δ1 6= δ2 are two transitions starting

from (q, a) then the languages Lδ1
, Lδ2

are disjoint.

Proof. Assume contrary that there exists a tree r ∈ Lδ1
∩ Lδ2

with two
respective accepting runs ρ1, ρ2. Since (q, a) is productive so there exists a
tree t and an accepting run ρ on t such that ρ(ǫ) = q0, ρ(v) = q, and t(v) = a
for some vertex v. Consider the tree t′ = t[r/v] — the tree obtained from
t by substituting r as the subtree under v. Since ρ(v) = q and both ρ1, ρ2

start from (q, a) so we can construct two accepting runs ρ[ρ1/v] and ρ[ρ2/v]
on t′. Since both these runs start from q0 but differ on the transition used in
v, we obtain a contradiction to the fact that A is unambiguous. �

Let (q, a) be a productive pair and {δ1, δ2, . . . , δn} be the set of transitions
of A starting from (q, a). In that case the languages Lδk

for k = 1, 2, . . . , n are
pairwise disjoint. We use [AS05] and the fact that Comp(i+1, 2n) automata
are closed under Boolean combinations to find Comp(i+ 1, 2n) automata Cδk

for k = 1, 2, . . . , n such that:

• for k = 1, 2, . . . , n we have Lδk
⊆ L(Cδk

),

• for k 6= k′ the languages L(Cδk
), L(Cδ

k′
) are disjoint,

• the union
⋃

k=1,2,...,n L(Cδk
) equals TrA.

We construct an alternating Comp(i + 1, 2n) automaton R recognising
L(A). The crucial part of this automaton is its initial component C ⊆ QR.
The set QR of states of R is a disjoint union of C and states of all automata
Cδk

. States in C are of the form (q, n) where q is a state of A and n is either
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⊥ or an odd number between i and 2n. The initial state of R is (qI , ⊥). The
transitions of R inside C are build by the following rules. Assume that the
label of the current vertex is a and the current state is (q, n):

1. if the pair (q, a) is not productive, ∃ looses,

2. if n 6= ⊥ and Ω(q) > n then ∀ looses,

3. if n = ⊥ then ∀ declares a new value n′: some odd number between i
and 2n, or still ⊥,

4. ∃ declares a transition δ = (q, qL, a, qR) of A that starts from (q, a),

5. ∀ decides to reject this transition or to accept it,

6. if ∀ rejects the transition, R makes an ǫ-transition to the initial state
of Cδ (n does not play any role in that case),

7. if ∀ accepts the transition then he selects a direction d ∈ {L, R} and
the automaton R makes a d-transition to the state (qd, n′).

Note that each play of this game starts in C and either stays there forever
or leaves to some Cδ and stays there forever. Note also that C consists of
two components: CI with n = ⊥ and CF where n 6= ⊥. Let the priorities of
all states of the form (q, ⊥) equal 0. Consider a state (q, n) with n 6= ⊥. If
Ω(q) = n then such a state has priority 1, otherwise it is 0.

We first argument that if i < 2n−1 then the automaton R is a Comp(i+
1, 2n) automaton. Note that the graph of R consists of the following strongly
connected components: CI , CF , and the components of Cδ for δ ∈ ∆. Note
that all components Cδ are by the construction Comp(i + 1, 2n) automata.
By the definition, CI and CF are Comp(i + 1, 2n) automata, so the whole
automaton R is also Comp(i + 1, 2n).

Consider i = 2n−1 (the Büchi case). Observe that the only possible odd
value n between i and 2n is n = 1, therefore there are no states in CF of
priority 0. Therefore, both CI and CF are Comp(2, 2) automata and whole
R is a Comp(2, 2) = Comp(0, 0) automaton.

The results of the following two sections imply that L(R) = L(A), thus
completing the proof of Theorem 1.1.
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3.1 Soundness

Lemma 3.2. If t ∈ L(A) then t ∈ L(R).

Proof. Fix the accepting run ρ of A on t. Consider the following strategy
σ∃ for ∃ in C: always declare δ consistent with ρ. Extend it to the winning
strategies in Cδ whenever they exist. That is, if the current vertex is v and the
state of R is of the form (q, n) ∈ C then declare δ = (ρ(v), ρ(vL), t(v), ρ(vR)).
Whenever the game moves from the component C into one of the automata
Cδ in a vertex v, fix some winning strategy in G(Cδ, t ↾v) (if exists) and play
according to this strategy.

Take any play consistent with σ∃ in G(R, t). First note that ∃ does not
loose by Condition 1 since all pairs (q, a) appearing during the play are
productive — the run ρ is a witness. There are following cases:

• ∀ looses in a finite time by Condition 2.

• ∀ stays forever in CI never changing the value of n and looses by the
parity criterion.

• In some vertex v of the tree ∀ rejects the transition δ given by ∃ and
the game proceeds to Cδ. In that case t ↾v∈ Lδ by the definition of Lδ

(the run ρ↾v is a witness) and therefore t↾v∈ L(Cδ). So ∃ has a winning
strategy in G(Cδ, t↾v) so wins the rest of the game.

• ∀ declares a value n 6= ⊥ at some point and then accepts all successive
transitions of ∃. In that case the game follows an infinite branch b of t.
Since ρ is accepting so we know that k = lim supi→∞ Ω(ρ(b↾i)) is even.
If k > n then ∀ looses at some point by Condition 2. Otherwise k < n
and from some point on all states of R visited during the game have
priority 0, thus ∀ looses by the parity criterion in CF .

�

3.2 Completeness

Lemma 3.3. If t /∈ L(A) then t /∈ L(R).

Proof. We assume that t /∈ L(A) and give a winning strategy for ∀ in the
game G(R, t). First, we inductively define a partial run ρ of A on t, i.e. a
partial function ρ : {L, R}∗ ⇀ QA. We start by putting ρ(ǫ) = q0. Assume
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that the value of ρ is defined in a vertex v ∈ {L, R}∗. Let a = t(v) and
q = ρ(v). If (q, a) is unproductive we leave the values of ρ on the subtree
under v undefined. In that case we call v a leaf of ρ. Otherwise, the space TrA

is split into disjoint sets L(Cδ) ranging over transitions δ starting from (q, a).
Therefore, there exists exactly one transition δ ∈ ∆ starting from (q, a) such
that t↾v∈ L(Cδ). Let δ = (q, qL, a, qR) and ρ(vd) = qd for d = L, R.

Note that either ρ is a partial run: there is a vertex v such that ρ(v) = q
and (q, t(v)) is unproductive, or ρ is a total run. Since t /∈ L(A) so ρ cannot be
a total accepting run. Let b be a finite or infinite branch: either b ∈ {L, R}∗

and b is a leaf of ρ or b is an infinite branch such that k := lim supi→∞ Ω(ρ(b↾i

)) is odd. If b is finite let us put any odd value between i and 2n as k.
Consider the following strategy for ∀:

• ∀ keeps n = ⊥ until there are no states of rank greater than k along b
in ρ. Then he declares n′ = k.

• ∀ accepts a transition δ given by ∃ in a vertex v if and only if it is
consistent with ρ in v (i.e. if δ = (ρ(v), ρ(vL), t(v), ρ(vR))).

• ∀ always follows π.

As before, we extend this strategy to strategies on Cδ whenever they exist.
Consider any play π consistent with σ∀. Note that if b is a finite word and

the play π reaches vertex b in a state (q, n) in C, then q = ρ(b) and ∀ wins
as (ρ(b), t(b)) is not productive. Similarly, by the definition, ∀ never looses
by Condition 2 — if he declared n 6= ⊥ then they will never reach a state of
priority greater than n.

First assume that at some vertex v player ∀ rejected a transition δ declared
by ∃. It means that there is other transition δ′ 6= δ consistent with ρ in v.
By the definition of ρ we know that t ↾v∈ Lδ′ in particular t ↾v∈ L(Cδ′).
Since languages Cδ′ , Cδ are disjoint, so t↾v /∈ Cδ so ∀ has a winning strategy in
G(Cδ, t↾v) and wins in that case.

Consider the opposite case: ∀ accepted all transitions declared by ∃ and
the play is infinite. In that case, for every i ∈ N the game reached the vertex
b↾i in a state (q, n) satisfying q = ρ(b↾i). In that case there is some vertex v
along b where ∀ declared n = k. Therefore, infinitely many times Ω(q) = n
along π so ∀ wins that play by the parity criterion. �
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