Abstract
Two words u and v are said to be k-abelian equivalent if, for each word x of length at most k, the number of occurrences of x as a factor of u is the same as for v. We study some combinatorial properties of k-abelian equivalence classes. Our starting point is a characterization of k-abelian equivalence by rewriting, so-called k-switching. We show that the set of lexicographically least representatives of equivalence classes is a regular language. From this we infer that the sequence of the numbers of equivalence classes is \(\mathbb {N}\)-rational. We also show that the set of words defining k-abelian singleton classes is regular.
J. Karhumäki—Supported by the Academy of Finland, grant 257857.
S. Puzynina—Supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).
M.A. Whiteland—Supported by the Academy of Finland, grant 257857.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cassaigne, J., Karhumäki, J., Saarela, A.: On growth and fluctuation of \(k\)-Abelian complexity. In: 10th International Computer Science Symposium Computer Science - Theory and Applications, CSR 2015, Proceedings, Listvyanka, Russia, 13–17 July 2015, pp. 109–122 (2015). http://dx.doi.org/10.1007/978-3-319-20297-6_8
Ehlers, T., Manea, F., Mercas, R., Nowotka, D.: \(k\)-Abelian pattern matching. J. Discrete Algorithms 34, 37–48 (2015). http://dx.doi.org/10.1016/j.jda.2015.05.004
Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press Inc., New York (1974)
Gansner, E.R., North, S.C.: An open graph visualization system and its applications to software engineering. Softw. Prac. Experience 30(11), 1203–1233 (2000). http://www.graphviz.org
Huova, M., Karhumäki, J., Saarela, A., Saari, K.: Local squares, periodicity and finite automata. In: Rainbow of Computer Science - Dedicated to Hermann Maurer on the Occasion of His 70th Birthday, pp. 90–101 (2011). http://dx.doi.org/10.1007/978-3-642-19391-0_7
Huova, M., Saarela, A.: Strongly \(k\)-Abelian repetitions. In: 9th International Conference on Combinatoricson Words, WORDS 2013, Turku, Finland, Proceedings, pp. 161–168, 19–20 September 2013. http://dx.doi.org/10.1007/978-3-642-40579-2_18
Karhumäki, J.: Generalized Parikh mappings and homomorphisms. Inf. control 47(3), 155–165 (1980). http://dx.doi.org/10.1016/S0019-9958(80)90493–3
Karhumäki, J., Puzynina, S.: On \(k\)-Abelian palindromic rich and poor words. In: 18th International Conference on Developments in Language Theory, DLT 2014, Proceedings, Ekaterinburg, Russia, 26–29 August 2014, pp. 191–202 (2014). http://dx.doi.org/10.1007/978-3-319-09698-8_17
Karhumäki, J., Puzynina, S., Rao, M., Whiteland, M.A.: On cardinalities of \(k\)-Abelian equivalence classes. Theor. Comput. Sci. (2016). doi:10.1016/j.tcs.2016.06.010
Karhumäki, J., Puzynina, S., Saarela, A.: Fine and Wilf’s theorem for \(k\)-Abelian periods. Int. J. Found. Comput. Sci. 24(7), 1135–1152 (2013). http://dx.doi.org/10.1142/S0129054113400352
Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of Abelian equivalence and complexity of infinite words. J. Comb. Theor. Ser. A 120(8), 2189–2206 (2013). http://dx.doi.org/10.1016/j.jcta.2013.08.008
Karhumäki, J., Saarela, A., Zamboni, L.Q.: Variations of the Morse-Hedlund theorem for \(k\)-Abelian equivalence. In: 18th International Conference on Developments in Language Theory, DLT 2014, Proceedings, Ekaterinburg, Russia, 26–29 August 2014, pp. 203–214 (2014). http://dx.doi.org/10.1007/978-3-319-09698-8_18
Lothaire, M. (ed.): Combinatorics on Words, 2nd edn. Cambridge University Press, Cambridge (1997). http://dx.doi.org/10.1017/CBO9780511566097, Cambridge Books Online
Møller, A.: dk.brics.automaton - finite-state automata and regular expressions for Java (2010). http://www.brics.dk/automaton/
Rao, M., Rosenfeld, M.: Avoidability of long \(k\)-abelian repetitions. Mathematics of Computation (published electronically, 18 February 2016). http://dx.doi.org/10.1090/mcom/3085
Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Texts and Monographs in Computer Science. Springer, New York (1978). http://dx.doi.org/10.1007/978-1-4612-6264-0
Weintraub, S.H.: Jordan canonical form: theory and practice. In: Synthesis Lectures on Mathematics and Statistics, Morgan & Claypool Publishers (2009). http://dx.doi.org/10.2200/S00218ED1V01Y200908MAS006
Acknowledgments
The automata used to calculate the functions in Propositions 14 and 15 were constructed using the java package dk.brics.automaton [14]. The automata in Fig. 3 were created using the software Graphviz [4]. We would like to thank the anonymous referees for valuable comments which helped to improve the presentation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cassaigne, J., Karhumäki, J., Puzynina, S., Whiteland, M.A. (2016). k-Abelian Equivalence and Rationality. In: Brlek, S., Reutenauer, C. (eds) Developments in Language Theory. DLT 2016. Lecture Notes in Computer Science(), vol 9840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53132-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-662-53132-7_7
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-53131-0
Online ISBN: 978-3-662-53132-7
eBook Packages: Computer ScienceComputer Science (R0)