Skip to main content

k-Abelian Equivalence and Rationality

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9840))

Included in the following conference series:

Abstract

Two words u and v are said to be k-abelian equivalent if, for each word x of length at most k, the number of occurrences of x as a factor of u is the same as for v. We study some combinatorial properties of k-abelian equivalence classes. Our starting point is a characterization of k-abelian equivalence by rewriting, so-called k-switching. We show that the set of lexicographically least representatives of equivalence classes is a regular language. From this we infer that the sequence of the numbers of equivalence classes is \(\mathbb {N}\)-rational. We also show that the set of words defining k-abelian singleton classes is regular.

J. Karhumäki—Supported by the Academy of Finland, grant 257857.

S. Puzynina—Supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

M.A. Whiteland—Supported by the Academy of Finland, grant 257857.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cassaigne, J., Karhumäki, J., Saarela, A.: On growth and fluctuation of \(k\)-Abelian complexity. In: 10th International Computer Science Symposium Computer Science - Theory and Applications, CSR 2015, Proceedings, Listvyanka, Russia, 13–17 July 2015, pp. 109–122 (2015). http://dx.doi.org/10.1007/978-3-319-20297-6_8

  2. Ehlers, T., Manea, F., Mercas, R., Nowotka, D.: \(k\)-Abelian pattern matching. J. Discrete Algorithms 34, 37–48 (2015). http://dx.doi.org/10.1016/j.jda.2015.05.004

    Article  MathSciNet  MATH  Google Scholar 

  3. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press Inc., New York (1974)

    MATH  Google Scholar 

  4. Gansner, E.R., North, S.C.: An open graph visualization system and its applications to software engineering. Softw. Prac. Experience 30(11), 1203–1233 (2000). http://www.graphviz.org

    Article  MATH  Google Scholar 

  5. Huova, M., Karhumäki, J., Saarela, A., Saari, K.: Local squares, periodicity and finite automata. In: Rainbow of Computer Science - Dedicated to Hermann Maurer on the Occasion of His 70th Birthday, pp. 90–101 (2011). http://dx.doi.org/10.1007/978-3-642-19391-0_7

    Google Scholar 

  6. Huova, M., Saarela, A.: Strongly \(k\)-Abelian repetitions. In: 9th International Conference on Combinatoricson Words, WORDS 2013, Turku, Finland, Proceedings, pp. 161–168, 19–20 September 2013. http://dx.doi.org/10.1007/978-3-642-40579-2_18

  7. Karhumäki, J.: Generalized Parikh mappings and homomorphisms. Inf. control 47(3), 155–165 (1980). http://dx.doi.org/10.1016/S0019-9958(80)90493–3

    Article  MathSciNet  MATH  Google Scholar 

  8. Karhumäki, J., Puzynina, S.: On \(k\)-Abelian palindromic rich and poor words. In: 18th International Conference on Developments in Language Theory, DLT 2014, Proceedings, Ekaterinburg, Russia, 26–29 August 2014, pp. 191–202 (2014). http://dx.doi.org/10.1007/978-3-319-09698-8_17

    Google Scholar 

  9. Karhumäki, J., Puzynina, S., Rao, M., Whiteland, M.A.: On cardinalities of \(k\)-Abelian equivalence classes. Theor. Comput. Sci. (2016). doi:10.1016/j.tcs.2016.06.010

    Google Scholar 

  10. Karhumäki, J., Puzynina, S., Saarela, A.: Fine and Wilf’s theorem for \(k\)-Abelian periods. Int. J. Found. Comput. Sci. 24(7), 1135–1152 (2013). http://dx.doi.org/10.1142/S0129054113400352

    Article  MATH  Google Scholar 

  11. Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of Abelian equivalence and complexity of infinite words. J. Comb. Theor. Ser. A 120(8), 2189–2206 (2013). http://dx.doi.org/10.1016/j.jcta.2013.08.008

    Article  MathSciNet  MATH  Google Scholar 

  12. Karhumäki, J., Saarela, A., Zamboni, L.Q.: Variations of the Morse-Hedlund theorem for \(k\)-Abelian equivalence. In: 18th International Conference on Developments in Language Theory, DLT 2014, Proceedings, Ekaterinburg, Russia, 26–29 August 2014, pp. 203–214 (2014). http://dx.doi.org/10.1007/978-3-319-09698-8_18

    Google Scholar 

  13. Lothaire, M. (ed.): Combinatorics on Words, 2nd edn. Cambridge University Press, Cambridge (1997). http://dx.doi.org/10.1017/CBO9780511566097, Cambridge Books Online

    MATH  Google Scholar 

  14. Møller, A.: dk.brics.automaton - finite-state automata and regular expressions for Java (2010). http://www.brics.dk/automaton/

  15. Rao, M., Rosenfeld, M.: Avoidability of long \(k\)-abelian repetitions. Mathematics of Computation (published electronically, 18 February 2016). http://dx.doi.org/10.1090/mcom/3085

  16. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Texts and Monographs in Computer Science. Springer, New York (1978). http://dx.doi.org/10.1007/978-1-4612-6264-0

    Book  MATH  Google Scholar 

  17. Weintraub, S.H.: Jordan canonical form: theory and practice. In: Synthesis Lectures on Mathematics and Statistics, Morgan & Claypool Publishers (2009). http://dx.doi.org/10.2200/S00218ED1V01Y200908MAS006

Download references

Acknowledgments

The automata used to calculate the functions in Propositions 14 and 15 were constructed using the java package dk.brics.automaton [14]. The automata in Fig. 3 were created using the software Graphviz [4]. We would like to thank the anonymous referees for valuable comments which helped to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus A. Whiteland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cassaigne, J., Karhumäki, J., Puzynina, S., Whiteland, M.A. (2016). k-Abelian Equivalence and Rationality. In: Brlek, S., Reutenauer, C. (eds) Developments in Language Theory. DLT 2016. Lecture Notes in Computer Science(), vol 9840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53132-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53132-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53131-0

  • Online ISBN: 978-3-662-53132-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics