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Abstract. Two words u and v are said to be k-abelian equivalent if, for
each word x of length at most k, the number of occurrences of x as a
factor of u is the same as for v. We study some combinatorial properties of
k-abelian equivalence classes. Our starting point is a characterization of
k-abelian equivalence by rewriting, so-called k-switching. We show that
the set of lexicographically least representatives of equivalence classes is
a regular language. From this we infer that the sequence of the numbers
of equivalence classes is N-rational. We also show that the set of words
defining k-abelian singleton classes is regular.
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1 Introduction

k-abelian equivalence has attracted quite a lot of interest recently, see, e.g.,
[1,2,8,10,12,15]. It is an equivalence relation extending abelian equivalence and
allowing an infinitary approximation of the equality of words defined as follows:
for an integer k, two words u and v are k-abelian equivalent, denoted by u ∼k v,
if, for each word w of length at most k, w occurs in u and v equally often.

k-abelian equivalence, originally introduced in [7], has been studied, e.g., in
the following directions: avoiding k-abelian powers [6,15], estimating the number
of k-abelian equivalence classes, that is, k-abelian complexity [11], analyzing the
growth and the fluctuation of the k-abelian complexity of infinite words [1],
analyzing k-abelian palindromicity [8], and studying k-abelian singletons [9]. We
continue the approach of analyzing the structure of k-abelian equivalence classes.
We also study some numerical properties of the equivalence classes.
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Our starting point is a k-switching lemma, proved in [9], which allows a char-
acterization of k-abelian equivalence in terms of rewriting. This is quite different
from the other existing characterizations, so it is no surprise that it opens new
perspectives of k-abelian equivalence. This is what we intend to explore here.

A fundamental observation from the characterization of k-abelian equiva-
lence using k-switching is that certain languages related to k-abelian equivalence
classes are regular (or rational). More precisely, the union of all singleton classes
forms a regular language, for any parameter k, and any size m of the alpha-
bet. Similarly, the set of lexicographically least (or greatest) representatives of
k-abelian equivalence classes forms a regular language. Summing up all mini-
mal elements of a fixed length we obtain the number of equivalence classes of
words of this length. As a consequence, we conclude that the complexity func-
tion of k-abelian equivalence, that is, the function computing the number of the
equivalence classes of all lengths, is a rational function.

Everything above is algorithmic. So, given the parameter k and the size m
of the alphabet, we can algorithmically compute a rational generating function
giving the numbers of all equivalence classes of words of length n. However, the
automata involved are – due to the non-determinism and the complementation
– so huge that in practice this can be done only for very small values of the
parameters. We illustrate these in a few examples.

Inspired by the connection to automata theory, we study k-switching in con-
nection with regular languages. We show that regular languages are closed under
the k-switching operation. On the other hand, we show that regular languages
are not closed under the transitive closure of this operation. Using the former
result, we conclude that the union of k-abelian equivalence classes of size two
is regular. On the other hand, it remains open whether this extends, instead of
classes of size two, to larger classes. Another open problem is to determine the
asymptotic behavior of the complexity function of equivalence classes.

2 Preliminaries and Notation

We recall some notation and basic terminology from the literature of combina-
torics on words. We refer the reader to [13] for more on the subject.

The set of finite words over an alphabet Σ is denoted by Σ∗ and the set of
non-empty words is denoted by Σ+. The empty word is denoted by ε. A set
L ⊆ Σ∗ is called a language. We let |w| denote the length of a word w ∈ Σ∗. By
convention, we set |ε| = 0. The language of words of length n over the alphabet
Σ is denoted by Σn.

For a word w = a1a2 · · · an ∈ Σ∗ and indices 1 ≤ i ≤ j ≤ n, we let w[i, j]
denote the factor ai · · · aj . For i > j we set w[i, j] = ε. Similarly, for i < j we let
w[i, j) denote the factor ai · · · aj−1, and we set w[i, j) = ε when i ≥ j. We say
that a word x ∈ Σ∗ has position i in w if the word w[i, |w|] has x as a prefix.
For u ∈ Σ+ we let |w|u denote the number of occurrences of u as a factor of w.

Two words u, v ∈ Σ∗ are k-abelian equivalent, denoted by u ∼k v, if |u|x =
|v|x for all x ∈ Σ+ with |x| ≤ k. The relation ∼k is clearly an equivalence
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relation; we let [u]k denote the k-abelian equivalence class defined by u. A word
u is called a k-abelian singleton if |[u]k| = 1.

In [9], k-abelian equivalence is characterized in terms of rewriting, namely by
k-switching. For this we define the following. Let k ≥ 1 and let u ∈ Σ∗. Suppose
that there exist x, y ∈ Σk−1, not necessarily distinct, and indices i, j, l and m,
with i < j ≤ l < m, such that x has positions i and l in u and y has positions j
and m in u. In other words, we have

u = u[1, i) · u[i, j) · u[j, l) · u[l,m) · u[m, |u|],

where both u[i, |u|] and u[l, |u|] begin with x and both u[j, |u|] and u[m, |u|] begin
with y. Furthermore, u[i, j), u[l,m) 6= ε but we allow l = j, in which case y = x
and u[j, l) = ε. We define a k-switching on u, denoted by Su,k(i, j, l,m), as

Su,k(i, j, l,m) = u[1, i) · u[l,m) · u[j, l) · u[i, j) · u[m, |u|]. (1)

A k-switching operation is illustrated in Figure 1.

u
i j ml

v

Fig. 1. Illustration of a k-switching. Here v = Sk,u(i, j, l,m); the white rectangles
symbolize x and the black rectangles symbolize y.

Example 1. Let u = aabababaaabab and k = 4. Let then x = aba, y = bab, i = 2,
j = 3, l = 4 and m = 11. We then have

u = a · a · b · ababaaa · bab
Su,4(i, j, l,m) = a · ababaaa · b · a · bab.

Note here that the occurrences of x are overlapping. With i = 2, j = l = 4, and
m = 10 we obtain the same word as above:

u = a · ab · ababaa · abab
Su,4(i, j, j,m) = a · ababaa · ab · abab.

In this example we have j = l, whence x = y = aba and u[j, l) = ε.

Let us define a relation Rk ofΣ∗ by uRkv if and only if v is obtained from u by
a k-switching. Now Rk is clearly symmetric, so that the reflexive and transitive
closure R∗k of Rk is an equivalence relation on Σ∗. In [9], k-abelian equivalence
is characterized using R∗k:

Lemma 2. For u, v ∈ Σ∗, we have u ∼k v if and only if uR∗kv.
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We need a few basic properties of regular (or rational) languages, such as
equivalent definitions of regular languages with various models of finite au-
tomata, e.g., nondeterministic finite automata which can read the empty word
(ε-NFA), and some basic closure properties of regular languages. We refer to [3]
for this knowledge. In addition to classical language theoretical properties, we
use the theory of languages with multiplicities. This counts how many times a
word occurs in a language. This leads to the theory of N-rational sets. Using the
terminology of [16], a multiset over Σ∗ is called N-rational if it is obtained from
finite multisets by applying finitely many times the rational operations product,
union, and taking quasi-inverses, i.e., iteration restricted to ε-free languages.
Further, a unary N-rational subset is referred to as an N-rational sequence. We
refer to [16] for more on this topic. The basic result we need is (see [16]):

Proposition 3. Let A be a nondeterministic finite automaton over the alphabet
Σ. The function fA : Σ∗ → N defined as

fA(w) = #of accepting paths of w in A

is N-rational. In particular, the function `A : N→ N,

`A(n) = #of accepting paths of length n in A (2)

is an N-rational sequence. Consequently, the generating function for `A is a
rational function.

3 Properties of k-Switchings

Our starting point for the study of structural properties of k-abelian equivalence
classes is the characterization of k-abelian equivalence in terms of k-switchings.
We proceed to describe a k-switching operation on languages. We show that this
operation preserves regularity. That is, given a regular language L, the language
obtained by this operation is also regular. This result will be used later on.

We now describe k-switchings on languages. For a language L ⊂ Σ∗, we
define the k-switching of L, denoted by Rk(L), as the language

Rk(L) = {w ∈ Σ∗ | wRkv for some v ∈ L}.

Similarly, we define R∗k(L) =
⋃
n∈NR

n
k (L) =

⋃
w∈L[w]k.

Note that, from a regular language L, it is straightforward to identify all
words that admit a k-switching (i.e., the words on the top row of Figure 1). It
is not at all clear that, by performing all possible k-switchings on all words of L
(i.e., taking the union of all words on the bottom row of Figure 1), the obtained
language is also regular. We give a direct automata theoretic construction to
show this.

Theorem 4. Let L be a regular language. Then Rk(L) is also regular.
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Proof. For a language L and fixed words x, y ∈ Σk−1, consider the language

Rx,y(L) = {w ∈ Σ∗ | w =Sk,u(i, j, l,m) for some i < j ≤ l < m, u ∈ L,
with u[i, i+ k − 1) = u[l, l + k − 1) = x and

u[j, j + k − 1) = u[m,m+ k − 1) = y}.

We will construct, for a regular language L recognized by a deterministic finite
automaton A = (Q,Σ, δ, pinit, F ), an ε-NFA Â which recognizes Rx,y(L). The
claim then follows for Rk(L), as Rk(L) =

⋃
x,y∈Σk−1 Rx,y(L) is a finite union of

regular languages.
In essence, Â is a cartesian product of form Â = A1×Ax×Ay×Ax×Ay. The

first component automaton A1 consists of 5|Q|4 copies of A, some of which are
connected by ε-transitions. The second and fourth components are copies of an
automaton Ax recognizing the language xΣ∗ and the third and fifth components
are copies of an automaton Ay recognizing the language yΣ∗. The components
2, 3, 4, and 5 are initiated according to the computations performed in A1. We
shall now make this construction more formal.

We first construct A1 = (Q1, Σ, δ1, p̃init, F1) as follows. For each state p ∈ Q,
we have p(c,(p1,p2),(p3,p4)) ∈ Q1 for all c = 1, . . . , 5 and pr ∈ Q, r = 1, . . . , 4. We
also add the initial state p̃init, from which we have ε-transitions to all the states of

form p
(1,(p1,p2),(p3,p4))
init , p1, p2, p3, p4 ∈ Q. Thus the computation ofA1 begins with

an ε-transition. We then add the following ε-transitions for all p1, p2, p3, p4 ∈ Q:

p
(1,(p1,p2),(p3,p4))
1

ε−→ p
(2,(p1,p2),(p3,p4))
2 , p

(2,(p1,p2),(p3,p4))
3

ε−→ p
(3,(p1,p2),(p3,p4))
4 ,

p
(3,(p1,p2),(p3,p4))
2

ε−→ p
(4,(p1,p2),(p3,p4))
1 , p

(4,(p1,p2),(p3,p4))
4

ε−→ p
(5,(p1,p2),(p3,p4))
3 .

Otherwise the computation of A1 respects the original automaton, that is,

δ1(p(i,(p1,p2),(p3,p4)), a) = q(i,(p1,p2),(p3,p4))

if and only if there is a transition δ(p, a) = q in A. Finally, F1 consists of all
states of form f (5,(p1,p2),(p3,p4)), where f ∈ F and p1, p2, p3, p4 ∈ Q.

We remark the following aboutA1. Firstly, once the first ε-transition is taken,
the states p1, p2, p3, and p4 are fixed for the remainder of the computation.
Secondly, the states pr, r = 1, . . . , 4, determine between which states an ε-
transition can be performed. Furthermore, the parameter c counts the number of
ε-transitions performed. The parameters c, p1, p2, p3, and p4 together determine
at which time and between which states an ε-transition can be performed.

We now describe the behavior of the rest of the component automata of Â.
For s ∈ {2, . . . , 5}, the sth component automaton of Â is initiated during the
sth ε-transition performed in A1 (the first ε-transition being the first compu-
tation step of A1). We also require from Â that, after the second and fourth
ε-transition performed in A1, at least one letter is read before performing the
next ε-transition. This is not required after the third ε-transition. Note that
these requirements can be encoded, e.g., into the parameter c of the states in
A1. Finally, Â accepts if and only if all its components are in accepting states.
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We first show that Rx,y(L) ⊆ L(Â). In order to see this, let u ∈ L and let v =
Sk,u(i, j, l,m) ∈ Rx,y(L). Let qt, t = 1, . . . , |u|, denote the state δ(pinit, u[1, t))
(note that some of the states qt can be the same). We then find an accepting
computation of A1 for v as follows. We first take the ε-transition from p̃init
to the state p

(1,(qi,ql),(qj ,qm))
init . After this, the computation is as in Figure 2 by

following the dashed lines. The computation of A on u follows the continuous
lines. Note that the other components of Â also end up in accepting states, since
by the definition of the k-switching Sk,u(i, j, l,m), x and y have positions in v
corresponding to the initiations of the copies of the automata Ax and Ay. Thus

Rx,y(L) ⊆ L(Â).

pinit qi qj ql qm f

p
(1)
init

p̃init
ε

q
(1)
i

q
(2)
l q

(2)
m

q
(3)
j q

(3)
l

q
(4)
i q

(4)
j

q
(5)
m f (5)

ε

ε

ε

ε

Fig. 2. The computation of automaton A on an accepted word u (in continuous lines)
and a computation of A1 on Sk,u(i, j, l,m) (in dotted lines). We have abbreviated the

states q
(c,(qi,ql),(qj ,qm))
r by q

(c)
r (for c ∈ {1, . . . , 5}, r ∈ {init, i, j, l,m}).

We now show the converse. For this, let v ∈ L(Â) and consider an ac-
cepting path of Â on v. By construction, the automaton A1 starts with an

ε-transition to a state p
(1,(p1,p2),(p3,p4))
init . After this, the computation contains

four more ε-transitions, suppose they occur just before reading the ith, jth, lth
and mth letter, with i < j ≤ l < m, respectively. (Here we use the require-
ment for not allowing an ε-transition immediately after the second and fourth
ε-transitions.) Furthermore, by the acceptance of the other component automata
of Â, x has positions i and l, and y has positions j and m in v. We claim that
u = Sk,v(i, j, l,m) ∈ L. It then follows, by the symmetry of the k-switching
relation, that v ∈ Rx,y(L). Indeed, turning back to the computation of A1 on v,
we obtain the following paths in A:

1. a path from pinit to p1 labeled by v[1, i),
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2. a path from p2 to p3 labeled by v[i, j),
3. a path from p4 to p2 labeled by v[j, l),
4. a path from p1 to p4 labeled by v[l,m), and
5. a path from p3 to an accepting state of A labeled by v[m, |v|].

Thus u = v[1, i)v[l,m)v[j, l)v[i, j)v[m, |v|] ∈ L, as was claimed. ut

Remark 5. This result may also be proved using MSO logic for words, as sug-
gested by one of the anonymous referees.

The following example shows that the family of regular languages is not
closed under the language operation R∗k.

Example 6. Fix k ≥ 1 and let L = (abk)+. It is straightforward to verify by, e.g.,
comparing the number of occurrences of factors of length k, that

R∗k(L) =

{
abr1abr2 · · · abrn | n ≥ 1, ri ≥ k − 1,

n∑
i=1

ri = nk

}
.

Let now h be a morphism defined by h(a) = abk−1 and h(b) = b. It is again
straightforward to show that h−1(R∗k(L)) = {w ∈ a{a, b}∗ | |w|a = |w|b}, which
is clearly not regular. It follows that R∗k(L) is not regular.

4 On the Number of k-Abelian Equivalence Classes

In this section we focus on the number Pk,m(n) of k-abelian equivalence classes
of words of length n over Σ, |Σ| = m, where k and an m are fixed. We first
recall a result from [11]:

Theorem 7. We have, for k and m fixed, Pk,m(n) = Θ(nm
k−1(m−1)), where the

constants in Θ depend on k and m.

We are also interested in the number Sk,m(n) of k-abelian singletons of length
n over Σ, |Σ| = m, where k and an m are fixed. We recall a result proved in [9].

Theorem 8. For k and m fixed, we have Sk,m(n) = O(nNm(k−1)−1), where the
constants in O depend on k and m. Here Nm(l) = 1

l

∑
d|l ϕ(d)ml/d is the number

of conjugacy classes (or necklaces) of words in Σl, where |Σ| = m.

The main result of this section is the following:

Theorem 9. The sequences Pk,m(n) and Sk,m(n) are N-rational.

In order to prove this, we define the following languages. Here ≤ denotes a
lexicographic ordering of Σ∗.

Lmin = {w ∈ Σ∗ | w ≤ u for all w ∼k u},
Lmax = {w ∈ Σ∗ | w ≥ u for all w ∼k u}, and

Lsing = {w ∈ Σ∗ | |[w]k| = 1}.
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In other words, Lmin (resp., Lmax) is the language of lexicographically minimal
(resp., maximal) representatives of k-abelian equivalence classes, while Lsing is
the language of k-abelian singletons. We also recall a technical lemma from [9],
a refinement of Lemma 2.

Lemma 10. Let u ∼k v with u 6= v. Let p be the longest common prefix of u
and v. Then there exists z ∈ Σ∗ such that zRku and the longest common prefix
of z and v has length at least |p|+ 1.

Lemma 11. The languages Lmin, Lmax, and Lsing are regular languages.

Proof. Let u be the minimal element in [u]k. If there exists a k-switching on
u which yields a new element, it has to be lexicographically greater than u. In
particular, u does not contain factors from the language

((xbΣ∗ ∩Σ∗y)Σ∗ ∩Σ∗x) aΣ∗ ∩Σ∗y,

where x, y ∈ Σk−1, a, b ∈ Σ, a < b. On the other hand, by the above lemma,
any word u avoiding such factors is lexicographically least in [u]k. We thus have

Lmin =
⋂

x,y∈Σk−1

a,b∈Σ, a<b

Σ∗ (((xbΣ∗ ∩Σ∗y)Σ∗ ∩Σ∗x) aΣ∗ ∩Σ∗y)Σ∗, (3)

where, for a regular expression R, R denotes the complement language Σ∗ \R.
Similarly, for Lmax, by reversing a < b to a > b in (3), we obtain the claim.
Finally, Lsing = Lmin ∩Lmax so that Lsing is regular. Another, perhaps more

informative, way to see this is as follows: for k-abelian singletons, we are avoid-
ing all possible k-switchings that give a different word. By requiring a 6= b, as
opposed to a < b, in (3), we obtain the expression for Lsing. ut

Proof (of Theorem 9). Consider first the language Lmin and a DFA A recogniz-
ing it. We transform the automaton to a unary NFA A′ by identifying all input
letters. Since A is deterministic, the transformation is faithful, that is, for each
word w accepted by A, there exists a unique corresponding accepting path in
A′, and vice versa. By the construction of A′, `A′(n) = Pk,m(n) for all n ∈ N,
from which the claim follows for Pk,m. The case for Sk,m is similar. ut

Remark 12. Let A be the adjacency matrix of the unary automaton A′ described
above. It is known that, for all large enough n,

`A′(n) =
∑

λ∈Eig(A)

pλ(n)λn (4)

where the summation is taken over all distinct eigenvalues of A, and pλ is a
complex polynomial of degree at most µλ − 1. Here µλ is the multiplicity of λ
as a root of the minimal polynomial of A (see for instance [3,17]).
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4.1 Complexities for Small Values of k and m

We now give some examples illustrating the results obtained above for small
values of k and m. We also compute closed formulas for Pk,m and Sk,m for some
small values of k and m.

Example 13. In figure Figure 3, we have two minimal DFAs, one recognizing the
minimal representatives of 2-abelian equivalence classes and the other recogniz-
ing 2-abelian singletons over Σ = {a, b}. The sink states are not included in the
figures. We also note that all other states are accepting, since the languages are
defined by avoiding certain patterns.

Fig. 3. DFAs recognizing the minimal representatives of 2-abelian equivalence classes
(left) and 2-abelian singletons (right) over the alphabet {a, b}.

Using the idea of the proof of Theorem 9, we first construct deterministic
automata for Lmin and Lsing for small k and m. We then use the automata to
compute the function ` as in Remark 12. We state these conclusions without
proofs:

Proposition 14.

For all n ≥ 1, P2,2(n) = n2 − n+ 2,

for all n ≥ 2, P2,3(n) = 1
18n

4 − 5
18n

3 + 65
36n

2 − 23
6 n−

1
8 (−1)n+

+ 2
27e
−πi3 (e

2πi
3 )n + 2

27e
πi
3 (e−

2πi
3 )n + 1307

216 , and

for all n ≥ 4, P3,2(n) = 1
960n

6 + 7
320n

5 + 67
384n

4 − 19
32n

3 + 1457
480 n

2−
− ( 1569

640 + 3
128 (−1)n)n+ 741

256 + 27
256 (−1)n.
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Proposition 15.

For all n ≥ 4, S2,2(n) = 2n+ 4,

for all n ≥ 6, S2,3(n) = 3n2 + 27n− 63, and

for all n ≥ 9, S3,2(n) =
1

2
n2 + 16n+

2

3
(e

2πi
3 n + (e−

2πi
3 )n)− 535

12
− 3

4
(−1)n.

The formulae for P2,2 and S2,2 have previously been proved, using different
methods, in [5] and [9], respectively. We note that Eero Harmaala (private com-
munication) has previously computed the values for P2,3 and P3,2 (n = 2, . . . , 18
and n = 4, . . . , 21, respectively). We also note that computing the first few val-
ues of S2,3(n) and S3,2(n) is an easy task. The On-Line Encyclopedia of Integer
Sequences (http://oeis.org, accessed June 10, 2016) does not contain any of
the above sequences.

The methods used here are far from being practical for computing closed
formulae for larger values of k and m, as is illustrated by the following example.

Example 16. For the binary alphabet, the number of states in the minimal DFA
recognizing Lmin for k = 2, 3, 4 is 10, 49, and 936, respectively. This makes com-
puting a closed formula for P4,2 already a computationally challenging problem.

Remark 17. The exponential blow-up of the computation time is due to com-
plementation and non-determinism of the automata obtained from the regular
expressions (3). Also, by Theorem 7, the automaton obtained from (3) has to
grow necessarily exponentially with respect to k when the alphabet is fixed; some
of the polynomials pλ in (4) have degree mk−1(m− 1).

For the case of k-abelian singletons, Theorem 8 does not give a large blow-
up immediately, though in [9] it is conjectured that Sk,m(n) = Θ(nNm(k−1)−1),
which would also yield a large blow-up in the number of states.

5 Towards a Structure of Fixed Sized Equivalence Classes

The regularity of the languages Lmin and Lsing raises questions for the structure
of larger equivalence classes. We are thus interested in the k-abelian equivalence
classes of fixed cardinality. We employ the result of Theorem 4 to obtain a first
step in this direction.

Proposition 18. The language L2 = {w ∈ Σ∗ | |[w]k| = 2} is a regular lan-
guage.

Proof. Consider the regular language L = Σ∗ \ (Lmin ∪ Lmax): we have

L = {w ∈ Σ∗ | |[w]k| ≥ 3 and w is not minimal or maximal},

since all classes containing at most two elements are removed. By Lemma 2,
Rk(Rk(L)) ∪Rk(L) ∪ L then gives exactly the language

L′ = {w ∈ Σ∗ | |[w]k| ≥ 3},
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and by Lemma 2, L′ is regular. Finally, the complement of L′ is the language
{w ∈ Σ∗ | |[w]k| ≤ 2}. We thus have that L2 = L′ \ Lsing is a regular language.

ut

Larger classes were not considered here, but we have no reason to suspect that
the corresponding languages would not be regular. In fact, we suspect that mod-
ifications of Theorem 4 could yield methods, similar to the ones used in the
above, to obtain some structure of larger classes.

6 Open Problems and Future Research

The topic of this paper opens up new aspects of k-abelian equivalence, and
presents a series of questions. Though explicit formulas for the functions Pk,m
and Sk,m were obtained, it remains to compute the corresponding generating
functions (which, by our results, are rational functions).

To conclude, we suggest the following open problems.

– What are the generating functions for Pk,m and Sk,m?

– When is Pk,m(n) ∼ Cnm
k−1(m−1) for some constant C? This is the case for

small values of k and m.
– Is the language of words w having |[w]k| = l, where l is a fixed constant, a

regular language? For l = 2, this is settled in the positive by Proposition 18.
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12. Karhumäki, J., Saarela, A., Zamboni, L.Q.: Variations of the Morse-Hedlund The-
orem for k-Abelian Equivalence. In: Developments in Language Theory - 18th In-
ternational Conference, DLT 2014, Ekaterinburg, Russia, August 26-29, 2014. Pro-
ceedings. pp. 203–214 (2014), http://dx.doi.org/10.1007/978-3-319-09698-8_
18

13. Lothaire, M. (ed.): Combinatorics on Words. Cambridge University Press, second
edn. (1997), http://dx.doi.org/10.1017/CBO9780511566097, Cambridge Books
Online

14. Møller, A.: dk.brics.automaton – finite-state automata and regular expressions for
Java (2010), http://www.brics.dk/automaton/

15. Rao, M., Rosenfeld, M.: Avoidability of long k-abelian repetitions. Mathematics of
Computation (Published electronically: February 18, 2016), http://dx.doi.org/
10.1090/mcom/3085

16. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science, Springer (1978), http://dx.doi.

org/10.1007/978-1-4612-6264-0

17. Weintraub, S.H.: Jordan Canonical Form: Theory and Practice. Synthesis Lectures
on Mathematics & Statistics, Morgan & Claypool Publishers (2009), http://dx.
doi.org/10.2200/S00218ED1V01Y200908MAS006

http://dx.doi.org/10.1007/978-3-642-19391-0_7
http://dx.doi.org/10.1007/978-3-642-19391-0_7
http://dx.doi.org/10.1007/978-3-642-40579-2_18
http://dx.doi.org/10.1007/978-3-642-40579-2_18
http://dx.doi.org/10.1016/S0019-9958(80)90493-3
http://dx.doi.org/10.1016/S0019-9958(80)90493-3
http://dx.doi.org/10.1007/978-3-319-09698-8_17
http://dx.doi.org/10.1007/978-3-319-09698-8_17
http://dx.doi.org/10.1142/S0129054113400352
http://dx.doi.org/10.1016/j.jcta.2013.08.008
http://dx.doi.org/10.1007/978-3-319-09698-8_18
http://dx.doi.org/10.1007/978-3-319-09698-8_18
http://dx.doi.org/10.1017/CBO9780511566097
http://www.brics.dk/automaton/
http://dx.doi.org/10.1090/mcom/3085
http://dx.doi.org/10.1090/mcom/3085
http://dx.doi.org/10.1007/978-1-4612-6264-0
http://dx.doi.org/10.1007/978-1-4612-6264-0
http://dx.doi.org/10.2200/S00218ED1V01Y200908MAS006
http://dx.doi.org/10.2200/S00218ED1V01Y200908MAS006

	k-Abelian Equivalence and Rationality

