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Abstract. We investigate the Minimum Eccentricity Shortest Path problem in some structured graph classes.
It asks for a given graph to find a shortest path with minimum eccentricity. Although it is NP-hard in general
graphs, we demonstrate that a minimum eccentricity shortest path can be found in linear time for distance-
hereditary graphs (generalizing the previous result for trees) and give a generalised approach which allows to
solve the problem in polynomial time for other graph classes. This includes chordal graphs, dually chordal
graphs, graphs with bounded tree-length, and graphs with bounded hyperbolicity. Additionally, we give a simple
algorithm to compute an additive approximation for graphs with bounded tree-length and graphs with bounded
hyperbolicity.

1 Introduction

The Minimum Eccentricity Shortest Path problem asks for a given graph G = (V,E) to find a shortest path P
such that for each other shortest path Q, ecc(P ) ≤ ecc(Q) holds. Here, the eccentricity of a set S ⊆ V in G is
ecc(S) = maxu∈V dG(u, S). This problem was introduced in [14]. It may arise in determining a “most accessible”
speedy linear route in a network and can find applications in communication networks, transportation planning,
water resource management and fluid transportation. It was also shown in [13,14] that a minimum eccentricity
shortest path plays a crucial role in obtaining the best to date approximation algorithm for a minimum distortion
embedding of a graph into the line. Specifically, every graph G with a shortest path of eccentricity r admits an
embedding f of G into the line with distortion at most (8r + 2) ld(G), where ld(G) is the minimum line-distortion
of G (see [14] for details). Furthermore, if a shortest path of G of eccentricity r is given in advance, then such an
embedding f can be found in linear time. Note also that every graph has a shortest path of eccentricity at most
⌊ld(G)/2⌋.

Those applications motivate investigation of the Minimum Eccentricity Shortest Path problem in general
graphs and in particular graph classes. Fast algorithms for it will imply fast approximation algorithms for the
minimum line distortion problem. Existence of low eccentricity shortest paths in structured graph classes will imply
low approximation bounds for those classes. For example, all AT-free graphs (hence, all interval, permutation,
cocomparability graphs) enjoy a shortest path of eccentricity at most 1 [8], all convex bipartite graphs enjoy a
shortest path of eccentricity at most 2 [13].

In [14], the Minimum Eccentricity Shortest Path problem was investigated in general graphs. It was shown that
its decision version is NP-complete (even for graphs with vertex degree at most 3). However, there are efficient
approximation algorithms: a 2-approximation, a 3-approximation, and an 8-approximation for the problem can be
computed in O(n3) time, in O(nm) time, and in linear time, respectively. Furthermore, a shortest path of minimum
eccentricity r in general graphs can be computed in O(n2r+2m) time. Paper [14] initiated also the study of the
Minimum Eccentricity Shortest Path problem in special graph classes by showing that a minimum eccentricity
shortest path in trees can be found in linear time. In fact, every diametral path of a tree is a minimum eccentricity
shortest path.

In this paper, we design efficient algorithms for the Minimum Eccentricity Shortest Path problem in distance-
hereditary graphs, in chordal graphs, in dually chordal graphs, and in more general graphs with bounded tree-length

⋆ Results of this paper were partially presented at WG 2015 [15].
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or with bounded hyperbolicity. Additionally, we give a simple algorithm to compute an additive approximation for
graphs with bounded tree-length and graphs with bounded hyperbolicity.

Note that our Minimum Eccentricity Shortest Path problem is close but different from the Central Path problem
in graphs introduced in [25]. It asks for a given graph G to find a path P (not necessarily shortest) such that any
other path of G has eccentricity at least ecc(P ). The Central Path problem generalizes the Hamiltonian Path problem
and therefore is NP-hard even for chordal graphs [23]. Our problem is polynomial time solvable for chordal graphs.

2 Notions and Notations

All graphs occurring in this paper are connected, finite, unweighted, undirected, loopless and without multiple edges.
For a graph G = (V,E), we use n = |V | and m = |E| to denote the cardinality of the vertex set and the edge set
of G. G[S] denotes the induced subgraph of G with the vertex set S.

The length of a path from a vertex v to a vertex u is the number of edges in the path. The distance dG(u, v) of
two vertices u and v is the length of a shortest path connecting u and v. The distance between a vertex v and a
set S ⊆ V is defined as dG(v, S) = minu∈S dG(u, v). The eccentricity ecc(v) of a vertex v is maxu∈V dG(u, v). For a
set S ⊆ V , its eccentricity is ecc(S) = maxu∈V dG(u, S). For a vertex pair s, t, a shortest (s, t)-path P has minimal
eccentricity, if there is no shortest (s, t)-path Q with ecc(Q) < ecc(P ). Two vertices x and y are called mutually
furthest if dG(x, y) = ecc(x) = ecc(y). A vertex u is k-dominated by a vertex v (by a set S ⊂ V ), if dG(u, v) ≤ k
(dG(u, S) ≤ k, respectively).

The diameter of a graph G is diam(G) = maxu,v∈V dG(u, v). The diameter diamG(S) of a set S ⊆ V is defined
as maxu,v∈S dG(u, v). A pair of vertices x, y of G is called a diametral pair if dG(x, y) = diam(G). In this case, every
shortest path connecting x and y is called a diametral path.

For a vertex v ∈ V , N(v) = {u ∈ V | uv ∈ E} is called the open neighborhood, and N [v] = N(v) ∪ {v}
the closed neighborhood of v. Nr[v] = {u ∈ V | dG(u, v) ≤ r} denotes the disk of radius r around vertex v.

Additionally, L
(v)
r = {u ∈ V | dG(u, v) = i} denotes the vertices with distance r from v. For two vertices u and v,

I(u, v) = {w | dG(u, v) = dG(u,w) + dG(w, v)} is the interval between u and v. The set Si(s, t) = L
(s)
i ∩ I(u, v) is

called a slice of the interval from u to v. For any set S ⊆ V and a vertex v, Pr(v, S) = {u ∈ S | dG(u, v) = dG(v, S)}
denotes the projection of v on S.

A chord in a path is an edge connecting two non-consecutive vertices of the path. A set of vertices S is a clique
if all vertices in S are pairwise adjacent. A graph is chordal if every cycle with at least four vertices has a chord. A
graph is distance-hereditary if the distances in any connected induced subgraph are the same as they are in the
original graph. A graph is dually chordal if it is the intersection graph of maximal cliques of a chordal graph. For
more definitions of these classes and relations between them see [4].

3 A Linear-Time Algorithm for Distance-Hereditary Graphs

Distance-hereditary graphs can be defined as graphs where each chordless path is a shortest path [19]. Several
interesting characterizations of distance-hereditary graphs in terms of metric and neighborhood properties, and
forbidden configurations were provided by Bandelt and Mulder [1], and by D’Atri and Moscarini [9]. The
following proposition lists the basic information on distance-hereditary graphs that is needed in what follows.

Proposition 1 ([1,9]). For a graph G the following conditions are equivalent:

(1) G is distance-hereditary;
(2) The house, domino, gem (see Fig. 1) and the cycles Ck of length k ≥ 5 are not induced subgraphs of G;

(3) For an arbitrary vertex x of G and every pair of vertices u, v ∈ L
(x)
k , that are in the same connected component

of the graph G[V \ L(x)
k−1], we have N(v) ∩ L(x)

k−1 = N(u) ∩ L(x)
k−1.

(4) (4-point condition) For any four vertices u, v, w, x of G at least two of the following distance sums are equal:
dG(u, v) + dG(w, x); dG(u,w) + dG(v, x); dG(u, x) + dG(v, w). If the smaller sums are equal, then the largest
one exceeds the smaller ones at most by 2.
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House Domino Gem

Fig. 1. Forbidden induced subgraphs in a distance-hereditary graph.

As a consequence of statement (3) of Proposition 1 we get.

Corollary 1. Let P := P (s, t) be a shortest path in a distance-hereditary graph G connecting vertices s and t, and
w be an arbitrary vertex of G. Let a be a vertex of Pr(w,P ) that is closest to s, and let b be a vertex of Pr(w,P )
that is closest to t. Then dG(a, b) ≤ 2 and there must be a vertex w′ in G adjacent to both a and b and at distance
dG(w,P )− 1 from w.

As a consequence of statement (4) of Proposition 1 we get.

Corollary 2. Let x, y, v, u be arbitrary vertices of a distance-hereditary graph G with v ∈ I(x, u), u ∈ I(y, v), and
dG(u, v) > 1, then dG(x, y) = dG(x, v) + dG(v, u) + dG(u, y). That is, if two shortest paths share ends of length at
least 2, then their union is a shortest path.

Proof. Consider distance sums S1 := dG(x, v) + dG(u, y), S2 := dG(x, y) + dG(u, v) and S3 := dG(x, u) + dG(v, y).
Since dG(x, u) + dG(v, y) = dG(x, v) + dG(u, y) + 2 dG(u, v), we have S3 > S1. Then, either S2 = S3 or S1 = S2 and
S3−S1 ≤ 2. If the latter is true, then 2 ≥ S3−S1 = dG(x, v)+dG(u, y)+2 dG(u, v)−dG(x, v)−dG(u, y) = 2 dG(v, u) > 2
and a contradiction arises. Thus, S2 = S3 and we get dG(x, y) = dG(x, v) + dG(v, u) + dG(u, y). ⊓⊔

Lemma 1. Let x, y be a diametral pair of vertices of a distance-hereditary graph G, and k be the minimum
eccentricity of a shortest path in G. If for some shortest path P = P (x, y), connecting x and y, ecc(P ) > k holds,
then diam(G) = dG(x, y) ≥ 2k. Furthermore, if dG(x, y) = 2k then there is a shortest path P ∗ between x and y with
ecc(P ∗) = k.

Proof. Consider a vertex v with dG(v, P ) > k. Let x′ be a vertex of Pr(v, P ) closest to x, and y′ be a vertex of
Pr(v, P ) closest to y. By Corollary 1, dG(x

′, y′) ≤ 2 and there must be a vertex v′ in G adjacent to both x′ and y′ and
at distance dG(v, P )−1 from v. Let P (x, x′) and P (y′, y) be subpaths of P connecting vertices x, x′ and vertices y, y′,
respectively. Consider also an arbitrary shortest path Q(v, v′) connecting v and v′ in G. By choices of x′ and y′, no
chords in G exist in paths P (x, x′)∪Q(v′, v) and P (y, y′)∪Q(v′, v). Hence, those paths are shortest in G. Since x, y is
a diametral pair, we have dG(x, x

′) + dG(x
′, y′) + dG(y

′, y) = dG(x, y) ≥ dG(x, v) = dG(x, x
′) + 1+ dG(v

′, v). That is,
dG(y

′, y) ≥ dG(v
′, v)+1−dG(x′, y′). Similarly, dG(x

′, x) ≥ dG(v
′, v)+1−dG(x′, y′). Combining both inequalities and

taking into account that dG(v, v
′) ≥ k, we get dG(x, y) = dG(x, x

′)+ dG(x
′, y′)+ dG(y

′, y) ≥ 2k+2− dG(x
′, y′) ≥ 2k.

Furthermore, we have dG(x, y) ≥ 2k+1 if dG(x
′, y′) = 1 and dG(x, y) ≥ 2k+2 if dG(x

′, y′) = 0. Also, if dG(x, y) = 2k
then dG(x

′, y′) = 2, dG(v, v
′) = k, dG(x, x

′) = dG(y, y
′) = k − 1 and dG(v, x) = dG(v, y) = 2k.

Now assume that dG(x, y) = 2k. Consider sets S = {w ∈ V | dG(x,w) = dG(y, w) = k} and Fx,y = {u ∈ V |
dG(u, x) = dG(u, y) = 2k}. Let c ∈ S be a vertex of S that k-dominates the maximum number of vertices in Fx,y.
Consider a shortest path P ∗ connecting vertices x and y and passing through vertex c. We will show that ecc(P ∗) = k.
Let x′ (y′) be the neighbor of c in subpath of P ∗ connecting c with x (with y, respectively).

Assume there is a vertex v in G such that dG(v, P
∗) > k. As in the first part of the proof, one can show that

dG(v, x
′) = dG(v, y

′) = k + 1, i. e., x′, y′ ∈ Pr(v, P ∗) and dG(v, P
∗) = k + 1. Furthermore, dG(v, x) = dG(v, y) = 2k,

i. e., v ∈ Fx,y. Also, vertex v
′, that is adjacent to x′, y′ and at distance k from v, must belong to S. Since dG(v, c) > k

but dG(v, v
′) = k, by choice of c, there must exist a vertex u ∈ Fx,y such that dG(u, c) ≤ k and dG(u, v

′) > k. Since
dG(u, y) = dG(u, x) = 2k, dG(u, c) must equal k and both dG(u, x

′) and dG(u, y
′) must equal k + 1.
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Since dG(v, u) ≤ diam(G) = 2k and dG(v, y
′) = dG(v, x

′) = k + 1 = dG(u, x
′) = dG(u, y

′), we must have a chord
between vertices of a shortest path P (v, v′) connecting v with v′ and vertices of a shortest path P (u, c) connecting u
with c. If no chords exist or only chord cv′ is present, then dG(v, u) ≥ 2k + 1, contradicting with diam(G) = 2k.
So, consider a chord ab with a ∈ P (v, v′), b ∈ P (u, c), ab ̸= cv′, and dG(a, v

′) + dG(b, c) is minimum. We know that
dG(a, v

′) = dG(b, c) must hold since dG(u, v
′) > k = dG(u, c) and dG(v, c) > k = dG(v, v

′). To avoid induced cycles
of length k ≥ 5, dG(a, v

′) = dG(b, c) = 1 must hold. But then, vertices a, b, c, x′, v′ form either an induced cycle C5,
when c and v′ are not adjacent, or a house, otherwise. Note that, by distance requirements, edges bv′, ca, bx′, and
ax′ are not possible.

Contradictions obtained show that such a vertex v with dG(v, P
∗) > k is not possible, i. e., ecc(P ∗) = k. ⊓⊔

Lemma 2. In every distance-hereditary graph there is a minimum eccentricity shortest path P (s, t) where s and t
are two mutually furthest vertices.

Proof. Let k be the minimum eccentricity of a shortest path in G. Let Q := Q(s, t) = (s = v0, v1, . . . , vi, . . . , vq = t)
be a shortest path of G of eccentricity k with maximum q, that is, among all shortest paths with eccentricity k, Q is
a longest one. Assume, without loss of generality, that t is not a vertex most distant from s. Let i ≤ q be the smallest
index such that subpath Q(s, vi) = (v0, v1, . . . , vi) of Q has also the eccentricity k. By choice of i, there must exist a
vertex v in G which is k-dominated only by vertex vi of Q(s, vi), i. e., Pr(v,Q(s, vi)) = {vi} and dG(v,Q(s, vi)) = k.
Let P (v, vi) be an arbitrary shortest path of G connecting v with vi. By choice of i, no vertex of P (v, vi) \ {vi} is
adjacent to a vertex of Q(s, vi) \ {vi}. Hence, path obtained by concatenating Q(s, vi) with P (vi, v) is chordless
and, therefore, shortest in G, and has eccentricity k, too. Note that v is now a most distant vertex from s, i. e.,
dG(s, v) = ecc(s). Since dG(s, v) > dG(s, t), a contradiction with maximality of q arises. ⊓⊔

The main result of this section is the following.

Theorem 1. Let x, y be a diametral pair of vertices of a distance-hereditary graph G, and k be the minimum
eccentricity of a shortest path in G. Then, there is a shortest path P between x and y with ecc(P ) = k.

Proof. We may assume that for some shortest path P ′ connecting x and y, ecc(P ′) > k holds (otherwise, there is
nothing to prove). Then, by Lemma 1, we have dG(x, y) ≥ 2k.

Let Q := Q(s, t) = (s = v0, v1, . . . , vi, . . . , vq = t) be a shortest path of G of eccentricity k such that s and t are
two mutually furthest vertices (see Lemma 2). Consider projections of x and y to Q. We distinguish between three
cases: Pr(x,Q) is completely on the left of Pr(y,Q) in Q; Pr(x,Q) and Pr(y,Q) have a common vertex w; and the
remaining case (see Corollary 1) when Pr(x,Q) = {vi−1, vi+1} and Pr(y,Q) = {vi} for some index i.

Case 1: Pr(x,Q) is completely on the left of Pr(y,Q) in Q.

Let x′ be a vertex of Pr(x,Q) closest to t and y′ a vertex of Pr(y,Q) closest to s. Consider an arbitrary shortest path
P (x, x′) of G connecting vertices x and x′, an arbitrary shortest path P (y′, y) of G connecting vertices y′ and y, and
a subpath Q(x′, y′) of Q(s, t) between vertices x′ and y′. We claim that the path P of G obtained by concatenating
P (x, x′) with Q(x′, y′) and then with P (y′, y) is a shortest path of eccentricity k.

Indeed, by choice of x′, no edge connecting a vertex in P (x, x′) \ {x′} with a vertex in Q(x′, y′) \ {x′} can exist in
G. Similarly, no edge connecting a vertex in P (y′, y) \ {y′} with a vertex in Q(x′, y′) \ {y′} can exist in G. Since we
also have dG(x, y) ≥ 2k, dG(x,Q) ≤ k and dG(y,Q) ≤ k, no edge connecting a vertex in P (y′, y) \ {y′} with a vertex
in P (x, x′) \ {x′} can exist in G. Hence, chordless path P = P (x, x′) ∪Q(x′, y′) ∪ P (y′, y) is a shortest path of G.

Consider now an arbitrary vertex v of G. We want to show that dG(v, P ) ≤ k. Since ecc(Q) = k, dG(v,Q) ≤ k.
Consider the projection of v to Q. We may assume that Pr(v,Q) ∩ Q(x′, y′) = ∅ and, without loss of generality,
that vertices of Pr(v,Q) are closer to s than vertex x′. Let v′ be a vertex of Pr(v,Q) closest to x′. As before, by
choices of v′ and y′, paths P (y, y′)∪Q(y′, v′) and P (v, v′)∪Q(y′, v′) are chordless and, therefore, are shortest paths
of G (here P (v, v′) is an arbitrary shortest path of G connecting v with v′). Since dG(v

′, y′) ≥ 2, by Corollary 2,
dG(v, y) = dG(v, v

′) + dG(v
′, y′) + dG(y

′, y). Hence, from dG(x, y) ≥ dG(y, v), dG(x, y) = dG(x, x
′) + dG(x

′, y) and
dG(v, y) = dG(v, x

′) + dG(x
′, y), we obtain dG(v, x

′) ≤ dG(x, x
′) ≤ k.

Case 2: Pr(x,Q) and Pr(y,Q) have a common vertex w.
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In this case, we have dG(x, y) ≤ dG(x,w) + dG(y, w) ≤ k + k = 2k. Earlier we assumed also that dG(x, y) ≥ 2k.
Hence, diam(G) = dG(x, y) = 2k and the statement of the theorem follows from Lemma 1.

Case 3: Remaining case when Pr(x,Q) = {vi−1, vi+1} and Pr(y,Q) = {vi} for some index i.

In this case, we have dG(x, y) ≤ dG(x, vi−1) + 1 + dG(vi, y) ≤ 2k + 1. By Lemma 1, we can assume that diam(G) =
dG(x, y) = 2k + 1, i. e., dG(x, vi−1) = dG(x, vi+1) = dG(vi, y) = k.

Let Q(s, vi−1) and Q(t, vi+1) be subpaths of Q connecting vertices s and vi−1 and vertices t and vi+1, respectively.
Pick an arbitrary shortest path P (y, vi) connecting y with vi. Since no chords are possible between Q(s, vi)\{vi} and
P (y, vi) \ {vi} and between Q(t, vi) \ {vi} and P (y, vi) \ {vi}, we have dG(y, t) = dG(y, vi) + dG(vi, t) = k + dG(vi, t)
and dG(y, s) = dG(y, vi) + dG(vi, s) = k + dG(vi, s). Inequalities dG(x, y) ≥ dG(y, t) and dG(x, y) ≥ dG(y, s) imply
dG(vi+1, t) ≤ dG(vi+1, x) = k and dG(vi−1, s) ≤ dG(vi−1, x) = k. If both dG(vi+1, t) and dG(vi−1, s) equal k, then
dG(s, t) = 2k + 2 contradicting with diam(G) = 2k + 1. Hence, we may assume, without loss of generality, that
dG(vi−1, s) ≤ k − 1. We will show that shortest path P := P (x, vi+1) ∪ P (vi, y) has eccentricity k (here, P (x, vi+1)
is an arbitrary shortest path of G connecting x with vi+1).

Consider a vertex v in G and assume that Pr(v,Q) is strictly contained in Q(t, vi+1). Denote by v′ the
vertex of Pr(v,Q) that is closest to s. Let P (v, v′) be an arbitrary shortest path connecting v and v′. As before,
P (v, v′) ∪Q(v′, s) is a chordless path and therefore dG(v, s) = dG(v, vi+1) + dG(vi+1, s). Since t is a most distant
vertex from s, dG(s, v) ≤ dG(s, t). Hence, dG(v, vi+1) + dG(vi+1, s) = dG(s, v) ≤ dG(s, t) = dG(s, vi+1) + dG(vi+1, t),
i. e., dG(v, vi+1) ≤ dG(vi+1, t) ≤ k.

Consider a vertex v in G and assume now that Pr(v,Q) is strictly contained in Q(s, vi−1). Denote by v′ the
vertex of Pr(v,Q) that is closest to t. Let P (v, v′) be an arbitrary shortest path connecting v and v′. Again,
P (v, v′) ∪ Q(v′, t) is a chordless path and therefore dG(v, t) = dG(v, vi) + dG(vi, t). Since s is a most distant
vertex from t, dG(t, v) ≤ dG(s, t). Hence, dG(v, vi) + dG(vi, t) = dG(t, v) ≤ dG(s, t) = dG(s, vi) + dG(vi, t), i. e.,
dG(v, vi) ≤ dG(vi, s) ≤ k.

Thus, all vertices of G are k-dominated by P (x, vi+1) ∪ P (vi, y). ⊓⊔

It is known [16] that a diametral pair of a distance-hereditary graph can be found in linear time. Hence, according
to Theorem 1, to find a shortest path of minimum eccentricity in a distance-hereditary graph in linear time, one
needs to efficiently extract a best eccentricity shortest path for a given pair of end-vertices. In what follows, we
demonstrate that, for a distance-hereditary graph, such an extraction can be done in linear time as well.

We will need few auxiliary lemmas.

Lemma 3. In a distance-hereditary graph G, for each pair of vertices s and t, if x is on a shortest path from v to
Πv = Pr(v, I(s, t)) and dG(x,Πv) = 1, then Πv ⊆ N(x).

Proof. Let p and q be two vertices in Πv and dG(v,Πv) = r. By statement (3) of Proposition 1, N(p) ∩ L(v)
r−1 =

N(q) ∩ L(v)
r−1. Thus, each vertex x on a shortest path from v to Πv with dG(x,Πv) = 1 (which is in N(p) ∩ L(v)

r−1 by
definition) is adjacent to all vertices in Πv, i. e., Πv ⊆ N(x). ⊓⊔

Lemma 4. In a distance-hereditary graph G, let Si(s, t) and Si+1(s, t) be two consecutive slices of an interval I(s, t).
Each vertex in Si(s, t) is adjacent to each vertex in Si+1(s, t).

Proof. Consider statement (3) of Proposition 1 from perspective of t. Thus, Si(s, t) ⊆ N(v) for each vertex v ∈
Si+1(s, t). Additionally, from perspective of s, Si+1(s, t) ⊆ N(u) for each vertex u ∈ Si(s, t). ⊓⊔

Lemma 5. In a distance-hereditary graph G, if a projection Πv = Pr(v, I(s, t)) intersects two slices of an interval
I(s, t), each shortest (s, t)-path intersects Πv.

Proof. Because of Lemma 3, there is a vertex x with N(x) ⊇ Πv and dG(v, x) = dG(v,Πv)− 1. Thus, Πv intersects
at most two slices of interval I(s, t) and those slices have to be consecutive, otherwise x would be a part of the
interval. Let Si(s, t) and Si+1(s, t) be these slices. Note that dG(s, x) = i+1. Thus, by statement (3) of Proposition 1,
N(x)∩ Si(s, t) = N(u)∩ Si(s, t) for each u ∈ Si+1(s, t). Therefore, Si(s, t) ⊆ Πv, i. e., each shortest path from s to t
intersects Πv. ⊓⊔
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From the lemmas above, we can conclude that, for determining a shortest (s, t)-path with minimal eccentricity, a
vertex v is only relevant if dG(v, I(s, t)) = ecc(I(s, t)) and the projection of v on the interval I(s, t) only intersects
one slice. Algorithm 1 uses this.

Algorithm 1: Computes a shortest (s, t)-path P with minimal eccentricity for a given distance-hereditary
graph G and a vertex pair s, t.

Input: A distance-hereditary graph G = (V,E) and two distinct vertices s and t.
Output: A shortest path P from s to t with minimal eccentricity.

1 Compute the sets Vi = {v | dG(v, I(s, t)) = i} for 1 ≤ i ≤ ecc(I(s, t)).
2 Each vertex v /∈ I(s, t) gets a pointer g(v) initialised with g(v) := v if v ∈ V1, and g(v) := ∅ otherwise.
3 for i := 2 to ecc(I(s, t)) do
4 For each v ∈ Vi, select a vertex u ∈ Vi−1 ∩N(v) and set g(v) := g(u).

5 foreach v ∈ Vecc(I(s,t)) do
6 If N(g(v)) intersects only one slice of I(s, t), flag g(v) as relevant.

7 Set P := {s, t}.
8 for i := 1 to dG(s, t)− 1 do
9 Find a vertex v ∈ Si(s, t) for which the number of relevant vertices in N(v) is maximal.

10 Add v to P .

Lemma 6. For a distance-hereditary graph G and an arbitrary vertex pair s, t, Algorithm 1 computes a shortest
(s, t)-path with minimal eccentricity in linear time.

Proof. The loop in line 3 determines for each vertex v outside of the interval I(s, t) a gate vertex g(v) such that
N(g(v)) ⊇ Pr(v, I(s, t)) and dG(v, I(s, t)) = dG(v, g(v)) + 1 (see Lemma 3). From Lemma 5 and Lemma 4, it
follows that for a vertex v which is not in Vecc(I(s,t)) or its projection to I(s, t) is intersecting two slices of I(s, t),
dG(v, P (s, t)) ≤ ecc(I(s, t)) for every shortest path P (s, t) between s and t. Therefore, line 6 only marks g(v) if
v ∈ Vecc(I(s,t)) and its projection Pr(v, I(s, t)) intersects only one slice. Because only one slice is intersected and each
vertex in a slice is adjacent to all vertices in the consecutive slice (see Lemma 4), in each slice the vertex of an
optimal (of minimum eccentricity) path P can be selected independently from the preceding vertex. If a vertex x
of a slice Si(s, t) has the maximum number of relevant vertices in N(x), then x is good to put in P . Indeed, if x
dominates all relevant vertices adjacent to vertices of Si(s, t), then x is a perfect choice to put in P . Else, any vertex
y of a slice Si(s, t) is a good vertex to put in P . Hence, P is optimal if the number of relevant vertices adjacent to P
is maximal. Thus, the path selected in line 8 to line 10 is optimal. ⊓⊔

Running Algorithm 1 for a diametral pair of vertices of a distance-hereditary graph G, by Theorem 1, we get a
shortest path of G with minimum eccentricity. Thus, we have proven the following result.

Theorem 2. A shortest path with minimum eccentricity of a distance-hereditary graph G = (V,E) can be computed
in O(|V |+ |E|) total time.

4 A Polynomial-Time Algorithm for Tree-Structured Graphs

4.1 Projection Gap

In a graph G, consider a shortest path P which starts in a vertex s. Each vertex x has a projection Πx = Pr(x, P ).
In case of a tree this is a single vertex. However, in general, Πx can contain multiple vertices and does not necessarily
induce a connected subgraph. In this case, there are two vertices u and w in Πx such that all vertices v in the
subpath Q between u and w are not in Πx. Formally, u,w ∈ Πx, Q = { v ∈ P | dG(s, u) < dG(s, v) < dG(s, w)}, and
Q ∩Πx = ∅.
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Now, assume the cardinality of Q is at most γ, i. e., dG(u,w) ≤ γ + 1 for each P , x, u and w. We refer to γ as
the projection gap of G.

Definition 1 (Projection Gap). In a graph G, let P = {v0, . . . , vl} be a shortest path with dG(v0, vi) = i. The
projection gap of G is γ, pg(G) = γ for short, if, for every vertex x of G and every two vertices vi, vk ∈ Pr(x, P ),
dG(vi, vk) > γ + 1 implies that there is a vertex vj ∈ Pr(x, P ) with i < j < k.

Based on this definition, we can make the following observation.

Lemma 7. In a graph G with pg(G) = γ, let P be a shortest path starting in s, Q be a subpath of P , |Q| > γ,
u and w be two vertices in P \Q such that dG(s, u) < dG(s,Q) < dG(s, w), and x be an arbitrary vertex in G. If
dG(x, u) < dG(x,Q), then dG(x,w) ≥ dG(x,Q).

Proof. Assume that dG(x, u) < dG(x,Q) and dG(x,w) < dG(x,Q). Without loss of generality, let dG(x, u) =
dG(x,w) < dG(x, v) for all v ∈ P with dG(s, u) < dG(s, v) < dG(s, w). Let P

′ be the subpath of P from u to w. Note
that Pr(x, P ′) = {u,w} and Q ⊂ P ′. Thus, dG(u,w) ≥ |Q|+ 1 > γ + 1. This contradicts with pg(G) = γ. ⊓⊔

Informally, Lemma 7 says that, when exploring a shortest path P , if the distance to a vertex x did not decrease
during the last γ + 1 vertices of P , it will not decrease when exploring the remaining subpath. Based on this, we
will show that a minimum eccentricity shortest path can be found in polynomial time if pg(G) is bounded by some
constant.

For the rest of this section, we assume we are given a graph G with pg(G) = γ containing a vertex s. We will
need the following notions and notations:

– Qi and Qj are subpaths of length γ of some shortest paths starting in s. They do not need to be subpath
of the same shortest path. Let vi ∈ Qi and vj ∈ Qj be the two vertices such that dG(s,Qi) = dG(s, vi) and
dG(s,Qj) = dG(s, vj). Without loss of generality, let dG(s, vi) ≤ dG(s, vj). We say, Qi is compatible with Qj

(with respect to s) if |Qi ∩Qj | = γ − 1, vi is adjacent to vj , and dG(s, vi) < dG(s, vj). Let Cs(Qj) denote the set
of subpaths compatible with Qj .

– Rs(Qj) = {w | Qj ⊆ I(s, w)} ∪ Qj is the set of vertices w such that there is a shortest path from s to w
containing Qj (or w ∈ Qj).

– I(s,Qj) = I(s, vj) ∪Qj are the vertices that are on a shortest path from s to Qj (or in Qj).
– V ↓

s (Qj) = {x | dG(x,Qj) = dG(x,Rs(Qj))} is the set of vertices x which are closer to Qj than to all other
vertices in Rs(Qj). Thus, given a shortest path P containing Qj and starting in s, expanding P beyond Qj will
not decrease the distance from x to P .

Note that Qj ⊆ V ↓
s (Qj) and Qj = I(s,Qj) ∩Rs(Qj).

4.2 Algorithm

Lemma 8. For each vertex x in G, dG(x,Qj) = dG(x, I(s,Qj)) or dG(x,Qj) = dG(x,Rs(Qj)).

Proof. Assume, dG(x,Qj) > dG(x, I(s,Qj)) and dG(x,Qj) > dG(x,Rs(Qj)). Then, there is a vertex ui ∈ I(s,Qj)
and a vertex ur ∈ Rs(Qj) with dG(x, ui) < dG(x,Qj) and dG(x,Qj) > dG(x, ur). Because ui, Qj , and ur are on a
shortest path starting in s and |Qj | > γ, this contradicts Lemma 7. ⊓⊔

Lemma 9. If Qi is compatible with Qj, then V
↓
s (Qi) ⊆ V ↓

s (Qj).

Proof. Assume that V ↓
s (Qi) * V ↓

s (Qj), i. e., there is a vertex x ∈ V ↓
s (Qi)\V ↓

s (Qj). Then, dG(x,Qj) > dG(x,Rs(Qj)).
Thus, by Lemma 8, dG(x,Qj) = dG(x, I(s,Qj)). Because Qi ⊆ I(s,Qj), dG(x,Qi) ≥ dG(x, I(s,Qj)) = dG(x,Qj).
Since x ∈ V ↓

s (Qi), dG(x,Qi) = dG(x,Rs(Qi)). Also, because x /∈ V ↓
s (Qi), dG(x,Qj) > dG(x,Rs(Qj)). Thus,

dG(x,Rs(Qi)) > dG(x,Rs(Qj)). On the other hand, because Rs(Qi) ⊇ Rs(Qj), dG(x,Rs(Qi)) ≤ dG(x,Rs(Qj)), and
a contradiction arises. ⊓⊔
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For a subpath Qj , let Ps(Qj) denote the set of shortest paths P which start in s such that Qj ⊆ P ⊆ I(s,Qj).
Then, we define εs(Qj) as follows:

εs(Qj) = min
P∈Ps(Qj)

max
x∈V ↓

s (Qj)
dG(x, P )

Consider a subpath Qj for which Rs(Qj) = Qj , i. e., a shortest path containing Qj cannot be extended any more.
Then, V ↓

s (Qj) = V . Therefore, for any path P ∈ Ps(Qj), maxx∈V ↓
s (Qj)

dG(x, P ) = ecc(P ).

Lemma 10. If Cs(Qj) is not empty, then

εs(Qj) = min
Qi∈Cs(Qj)

max

[
max

x∈V ↓
s (Qj)\V ↓

s (Qi)
min

(
dG(x,Qi), dG(x,Qj)

)
, εs(Qi)

]
.

Proof. By definition,
εs(Qj) = min

P∈Ps(Qj)
max

x∈V ↓
s (Qj)

dG(x, P ).

LetQi be compatible withQj . Because, by Lemma 9, V ↓
s (Qi) ⊆ V ↓

s (Qj), we can partition V ↓
s (Qj) into V

↓
s (Qj)\V ↓

s (Qi)
and V ↓

s (Qi). Thus, εs(Qj) =

min
Qi∈Cs(Qj)

min
P∈Ps(Qi)

max

[
max

x∈V ↓
s (Qj)\V ↓

s (Qi)
dG(x, P ∪Qj), max

x∈V ↓
s (Qi)

dG(x, P ∪Qj)

]
.

Note that we changed the definition of P from P ∈ Ps(Qj) to P ∈ Ps(Qi), i. e., P may not contain the last vertex of
Qj any more.

If x ∈ V ↓
s (Qj) \ V ↓

s (Qi), then dG(x,Qi) > dG(x,Rs(Qi)). Thus, by Lemma 8, dG(x,Qi) = dG(x, I(s,Qi)). Note
that, by definition of P , dG(x,Qi) ≥ dG(x, P ) ≥ dG(x, I(s,Qi)). Therefore, dG(x, P ) = dG(x,Qi) and

max
x∈V ↓

s (Qj)\V ↓
s (Qi)

dG(x, P ∪Qj) = max
x∈V ↓

s (Qj)\V ↓
s (Qi)

min
(
dG(x,Qi), dG(x,Qj)

)
.

For simplicity, we define
εs(Qi, Qj) := max

x∈V ↓
s (Qj)\V ↓

s (Qi)
min

(
dG(x,Qi), dG(x,Qj)

)
.

Note that εs(Qi, Qj) does not depend on P . Therefore, because minu max[c, f(u)] = max[c,minu f(u)],

εs(Qj) = min
Qi∈Cs(Qj)

max

[
εs(Qi, Qj), min

P∈Ps(Qi)
max

x∈V ↓
s (Qi)

dG(x, P ∪Qj)

]
.

If x ∈ V ↓
s (Qi), then dG(x,Qi) = dG(x,Rs(Qi)) ≤ dG(x,Rs(Qj)) = dG(x,Qj). Therefore,

min
P∈Ps(Qi)

max
x∈V ↓

s (Qi)
dG(x, P ∪Qj) = min

P∈Ps(Qi)
max

x∈V ↓
s (Qi)

dG(x, P ) = εs(Qi).

Thus,

εs(Qj) = min
Qi∈Cs(Qj)

max

[
max

x∈V ↓
s (Qj)\V ↓

s (Qi)
min

(
dG(x,Qi), dG(x,Qj)

)
, εs(Qi)

]
.

⊓⊔

Based on Lemma 10, Algorithm 2 computes a shortest path starting in s with minimal eccentricity. The algorithm
has two parts. First, it computes the pairwise distance of all vertices and dG(x,Rs(v)) for each vertex pair x
and v where, similarly to Rs(Qj), Rs(v) = { z ∈ V | v ∈ I(s, z)}. This allows to easily determine if a vertex x is
in V ↓

s (Qj). Second, it computes εs(Qj) for each subpath Qj . For this, the algorithm uses dynamic programming.
After calculating εs(Qi) for all subpaths with distance i to s, the algorithm uses Lemma 10 to calculate εs(Qj) for
all subpaths Qj which Qi is compatible with.
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Algorithm 2: Determines, for a given graph G with pg(G) ≤ γ and a vertex s, a minimal eccentricity shortest
path starting in s.

Input: A graph G = (V,E), an integer γ, and a vertex s ∈ V .
Output: A shortest path P starting in s with minimal eccentricity.

1 Determine the pairwise distances of all vertices.
2 foreach v, x ∈ V do
3 Set dG(x,Rs(v)) := dG(x, v).

4 for i = ecc(s)− 1 downto 0 do

5 foreach v ∈ L
(s)
i do

6 foreach w ∈ N(v) ∩ L
(s)
i+1 do

7 foreach x ∈ V do
8 Set dG(x,Rs(v)) := min

[
dG(x,Rs(v)), dG(x,Rs(w))

]
.

9 for j = 0 to ecc(s)− γ do
10 foreach Qj with dG(s,Qj) = j do
11 foreach x ∈ V do

12 Let zj be the vertex in Qj with the largest distance to s. If dG(x,Qj) ≤ dG(x,Rs(zj)), add x to V ↓
s (Qj)

and store dG(x,Qj).

13 if j = 0 then
14 εs(Qj) := max

x∈V
↓
s (Qj)

dG(x,Qj)

15 else
16 εs(Qj) := ∞
17 foreach Qi ∈ Cs(Qj) do

18 ε′s(Qj) := max

[
max

x∈V
↓
s (Qj)\V ↓

s (Qi)

min
(
dG(x,Qi), dG(x,Qj)

)
, εs(Qi)

]
19 if ε′s(Qj) < εs(Qj) then
20 Set εs(Qj) := ε′s(Qj) and p(Qj) := Qi.

21 Find a subpath Qj such that a shortest path containing Qj cannot be extended any more and for which εs(Qj) is
minimal.

22 Construct a path P from Qj to s using the p()-pointers and output it.

Theorem 3. For a given graph G with pg(G) = γ and a vertex s, Algorithm 2 computes a shortest path starting
in s with minimal eccentricity. It runs in O(nγ+3) time if γ ≥ 2, in O(n2m) time if γ = 1, and in O(nm) time if
γ = 0.

Proof (Correctness). The algorithm has two parts. The first part (line 1 to line 8) is a preprocessing which computes
dG(x,Rs(v)) for each vertex pair x and v. The second part computes εs(Qj) which is then used to determine a path
with minimal eccentricity.

For the first part, without loss of generality, let dG(s, v) = i, N↑
s (v) = N(v) ∩ L(s)

i+1, and let x be an arbitrary

vertex. By definition of Rs, N
↑
s (v) = ∅ implies Rs(v) = {v}, i. e., dG(x,Rs(v)) = dG(x, v). Therefore, dG(x,Rs(v))

is correct for all vertices v with N↑
s (v) = ∅ after line 3. By induction, assume that dG(x,Rs(w)) is correct for all

vertices w ∈ N↑
s (v). Because Rs(v) =

⋃
w∈N↑

s (v)
Rs(w)∪{v}, dG(x,Rs(v)) = min(minw∈N↑

s (v)
dG(x,Rs(w)), dG(x, v)).

Therefore, line 8 correctly computes dG(x,Rs(v)).

The second part of Algorithm 2 iterates over all subpaths Qj in increasing distance to s. Line 12 checks if a
given vertex x is in V ↓

s (Qj). By definition, Rs(Qj) = Qj ∪ Rs(zj) where zj is the vertex in Qj with the largest
distance to s. Thus, dG(x,Rs(Qj)) = min(dG(x,Rs(zj)), dG(x,Qj)). By definition of V ↓

s , x ∈ V ↓
s (Qj) if and only if
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dG(x,Qj) = dG(x,Rs(Qj)). Therefore, x ∈ V ↓
s (Qj) if and only if dG(x,Qj) ≤ dG(x,Rs(zj)), i. e., line 12 computes

V ↓
s (Qj) correctly.
Recall the definition of εs(Qj):

εs(Qj) = min
P∈Ps(Qj)

max
x∈V ↓

s (Qj)
dG(x, P )

If dG(s,Qj) = 0, dG(x, P ) = dG(x,Qj). Therefore, εs(Qj) = maxx∈V ↓
s (Qj)

dG(x,Qj) as computed in line 14. Note

that there is no subpath Qi which is compatible with Qj , if dG(s,Qj) = 0. Therefore, the loop starting in line 17 is
skipped for these Qj . Thus, the algorithm correctly computes εs(Qj), if dG(s,Qj) = 0.

By induction, assume that εs(Qi) is correct for each Qi ∈ C(Qj). Thus, Lemma 10 can be used to compute
εs(Qj). This is done in the loop starting in line 17. Therefore, at the beginning of line 21, εs(Qj) is computed
correctly for each subpath Qj .

Recall, if P ∈ P(Qj) and Rs(Qj) = Qj , then V
↓
s (Qj) = V and, therefore, maxx∈V ↓

s (Qj)
dG(x, P ) = ecc(P ). Thus,

Rs(Qj) = Qj implies that εs(Qj) is the minimal eccentricity of all shortest paths starting in s and containing Qj .
Therefore, if Qj is picked by line 21, then εs(Qj) is the minimal eccentricity of all shortest paths starting in s. ⊓⊔

Proof (Complexity). First, we will analyse line 1 to line 8. Line 1 runs in O(nm) time. This allows to access the
distance between two vertices in constant time. Thus, the total running time for line 3 is O(n). Because line 8 is
called at most once for each vertex x and edge vw, implementing line 4 to line 8 can be done in O(nm) time.

For the second part of the algorithm (starting in line 9), if γ ≥ 2, let all subpaths be stored in a trie as follows:
There are γ +1 layers of internal nodes. Each internal node is an array of size n (one entry for each vertex) and each
entry points to an internal node of the next layer representing n subtrees. This requires O(nγ+1) memory. Leafs are
objects representing a subpath.

If γ = 1, a subpath is a single edge, and, if γ = 0, a subpath is a single vertex. Thus, no extra data structure is
needed for these cases. In all three cases, a subpath can be accessed in O(γ) time.

Next, we analyse the runtime of line 11 to line 16 for a single subpath Qj . Accessing Qj can be done in O(γ)
time. Line 12 requires at most O(γ) time for a single call and is called at most O(n) times. Line 14 requires O(nγ)
time and line 16 runs in constant time. Therefore, for a given subpath, line 11 to line 16 require O(γn+ n) time.

For line 18 to line 20, consider a given pair of compatible subpaths Qi and Qj . Accessing both subpaths can be done
in O(γ) time. Assuming the vertices in V ↓

s (Qi) and V
↓
s (Qj) are sorted and stored with their distance to Qi and Qj ,

line 18 requires at most O(n) time. Note that Qi and Qj intersect in γ−1 vertices. Thus, min
(
dG(x,Qi), dG(x,Qj)

)
=

min
(
dG(x, vi), dG(x,Qj)

)
where vi is the vertex in Qi closest to s. Line 19 and line 20 run in constant time. Therefore,

for a given pair of compatible subpaths, line 18 to line 20 require O(n) time.
Let φ be the number of subpaths and ψ be the number of pairs of compatible subpaths. Then, the overall runtime

for line 9 to line 20 is O(φ(γn+ n) + ψn) time, O(φ) time for line 21, and O(n) time for line 22. Together with the
first part of the algorithm, the total runtime of Algorithm 2 is O(mn+ φ(γn+ n) + ψn).

Because a subpath contains γ + 1 vertices, there are up to O(nγ+1) subpaths and up to O(nγ+2) compatible
pairs if γ ≥ 2, i. e., φ ≤ nγ+1 and ψ ≤ nγ+2. Therefore, if γ ≥ 2, Algorithm 2 runs in O(nγ+3) time.

If γ = 1, a subpath is a single edge and there are at most mn compatible pairs of subpaths, i. e., φ ≤ m and
ψ ≤ nm. For the case when γ = 0, a subpath is a single vertex (φ ≤ n) and a pair of compatible subpaths is an edge
(ψ ≤ m). Therefore, Algorithm 2 runs in O(n2m) time if γ = 1, and in O(nm) time if γ = 0. ⊓⊔

Note that Algorithm 2 computes a shortest path starting in a given vertex s. Thus, a shortest path with minimum
eccentricity among all shortest paths in G can be determined by running Algorithm 2 for all start vertices s, resulting
in the following:

Theorem 4. For a given graph G with pg(G) = γ, a minimum eccentricity shortest path can be found in O(nγ+4)
time if γ ≥ 2, in O(n3m) time if γ = 1, and O(n2m) time if γ = 0.

4.3 Projection Gap for some Graph Classes

Above, we have shown that a minimum eccentricity shortest path can be found in polynomial time if the projection
gap is bounded by a constant. In this subsection, we will determine the projection gap for some graph classes.
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Chordal Graphs and Dually Chordal Graphs. The class of chordal graphs is a well known class which can be
recognised in linear time [26]. Due to the strong tree structure of chordal graphs, they have the following property
known as m-convexity:

Lemma 11 ([17]). Let G be a chordal graph. If, for two distinct vertices u, v in a disk Nr[x], there is a path P
connecting them with P ∩Nr[x] = {u, v}, then u and v are adjacent.

Lemma 12. If G is a chordal graph, then pg(G) = 0.

Proof. Assume pg(G) ≥ 1. Then, there is a shortest path P = {u, . . . , w} and a vertex x with Pr(x, P ) = {u,w}
and dG(u,w) > 1. By Lemma 11, u and w are adjacent. This contradicts with dG(u,w) > 1. ⊓⊔

Corollary 3. For chordal graphs, a minimum eccentricity shortest path can be found in O(n2m) time.

Dually chordal graphs where introduced in [3]. They are closely related to chordal graphs.

Lemma 13. If G is a dually chordal graph, then pg(G) ≤ 1.

Proof. Assume there is a shortest path P = {u, v1, . . . , vi, w} and a vertex x with Pr(x, P ) ⊇ {u,w}. To show that
pg(G) ≤ 1, we will show that dG(u,w) = i+ 1 > 2 implies there is a vertex vk ∈ Pr(x, P ) with 1 ≤ k ≤ i.

Consider a family of disks D =
{
N [u], N [v1], . . . , N [vi], N [w], Nr[x]

}
where r = dG(x, P ) − 1. Let H be the

intersection graph of D, a be the vertex in H representing N [u], bk representing N [vk] (for 1 ≤ k ≤ i), c representing
N [w], and z representing Nr[x]. Because the intersection graph of disks of a dually chordal graph is chordal [3], H
is chordal, too. H contains the edges za and zc, ab1, cbi, and bkbk+1 for all 1 ≤ k < i. Note that, if dG(u,w) > 2, a
and c are not adjacent in H. However, the path {a, b1, . . . , bk, c} connects a and c. Therefore, because H is chordal
and by Lemma 11, there is a k with 1 ≤ k ≤ i such that z is adjacent to bk in H. Thus, dG(x, vk) ≤ r + 1, i. e.,
vk ∈ Pr(x, P ). ⊓⊔

Corollary 4. For dually chordal graphs, a minimum eccentricity shortest path can be found in O(n3m) time.

Graphs with bounded Tree-Length or Tree-Breadth. As defined by Robertson and Seymour [24], a
tree-decomposition of a graph G = (V,E) is a tree T with the vertex set B where each vertex of T , called bag, is a
subset of V such that: (i) V =

⋃
B∈B B, (ii) for each edge uv ∈ E, there is a bag B ∈ B with u, v ∈ B, and (iii) for

each vertex v ∈ V , the bags containing v induce a subtree of T .
The length of a tree decomposition is smaller than or equal to λ if for each bag B, diamG(B) ≤ λ. A graph G

has tree-length λ, if there exist a tree-decomposition T for G such that T has length λ. Similarly, the breadth of
a tree decomposition is smaller than or equal to ρ if for each bag B there is a vertex v ∈ V with Nρ[v] ⊇ B. A
graph G has tree-breadth ρ, if there exist a tree-decomposition T for G such that T has breadth λ.

For these graphs, we use a concept called layering partition. It was introduced in [2,6]. The idea is to first

partition the vertices of a given graph in distance layers L
(x)
i with respect to a given vertex x. Second, partition

each layer L
(x)
i into clusters in such a way that two vertices u and v are in the same cluster if they are connected by

a path P such that dG(x, P ) = dG(x, u), i. e., P does not contain vertices of layers closer to x than u and v.
Unfortunately, computing the tree-length of a graph is an NP-hard problem [22]. However, for our needs, an

approximation of it would suffice.

Lemma 14. If G has tree-length λ or tree-breadth ρ, a factor γ ≥ pg(G) can be computed in O(n3) time such that
γ ≤ 3λ− 1 or γ ≤ 6ρ− 1, respectively.

Proof. To compute γ, first determine the pairwise distances of all vertices. Then, compute a layering partition for
each vertex x. Let γ + 1 be the maximum diameter of all clusters of all layering partitions.

The diameter of each cluster is at most 3λ if G has tree-length λ and at most 6ρ if G has tree-breadth ρ [11,12].
Therefore, for each shortest path P , diam(Pr(x, P )) ≤ 3λ and diam(Pr(x, P )) ≤ 6ρ, respectively. Thus, pg(G) ≤
γ ≤ 3λ− 1 and pg(G) ≤ γ ≤ 6ρ− 1.

Computing the pairwise distances of all vertices can be done in O(nm) time. A layering partition can be computed
in linear time [6]. For a given layering partition, the diameter of each cluster can be computed in O(n2) time if the
pairwise distances of all vertices are known. Thus, γ can be computed in O(n3) time. ⊓⊔
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Note that it is not necessary to know the tree-length or tree-breath of G to compute γ. Thus, by computing γ
and then running Algorithm 2 for each vertex in G, we get:

Corollary 5. For graphs with tree-length λ or tree-breadth ρ, a minimum eccentricity shortest path can be found in
O(n3λ+3) time or O(n6ρ+3) time, respectively.

δ-Hyperbolic Graphs. A graph has hyperbolicity δ if for any four vertices u, v, w, and x, the two larger of the
sums dG(u, v) + dG(w, x), dG(u,w) + dG(v, x), and dG(u, x) + dG(v, w) differ by at most 2δ.

Lemma 15 ([7]). Let u, v, w, and x be four vertices in a δ-hyperbolic graph. If dG(u,w) > max{dG(u, v), dG(v, w)}+
2δ, then dG(v, x) < max{dG(x, u), dG(x,w)}.

Lemma 16. If G is δ-hyperbolic, then pg(G) ≤ 4δ.

Proof. Consider two vertices u and w such that u,w ∈ Pr(x, P ) for some vertex x and shortest path P . Let v ∈ P
be a vertex such that dG(u, v) − dG(v, w) ≤ 1 and dG(u, v) ≥ dG(v, w), i. e., v is a middle vertex on the subpath
from u to w.

Assume, dG(u,w) > 4δ + 1. Thus, dG(u, v) ≥ dG(v, w) ≥ 2δ + 1 and dG(u,w) > dG(u, v) + 2δ. Therefore, by
Lemma 15, dG(v, x) < max{dG(x, u), dG(x,w)}. This contradicts that u,w ∈ Pr(x, P ). Hence, the diameter of a
projection is at most 4δ + 1 and, therefore, pg(G) ≤ 4δ. ⊓⊔

Corollary 6. For δ-hyperbolic graphs, a minimum eccentricity shortest path can be found in O(n4δ+4) time.

5 Approximation for Graphs with Bounded Tree-Length and Bounded
Hyperbolicity

In the last sections, we have shown how to find a shortest path with minimum eccentricity k for several graph
classes. For graphs with tree-length λ, this can require up to O(n3λ+3) time. In this section, we will show that, for
graphs with tree-length λ, we can find a shortest path with eccentricity at most k + 2.5λ in at most O(λm) time
and, for graphs with hyperbolicity δ, we can find a shortest path with eccentricity at most k +O(δ log n) in at most
O(δm) time.

Lemma 17. Let G be a graph with hyperbolicity δ. Two vertices x and y in G with ecc(x) = ecc(y) = dG(x, y) can
be found in O(δm) time.

Proof. Let u and v be two vertices in G such that dG(u, v) = diam(G). For an arbitrary vertex x0 and for i ≥ 0, let
yi = xi+1 be vertices in G such that dG(xi, yi) = ecc(xi) and dG(xi, yi) < dG(xi+1, yi+1). To prove Lemma 17, we
will show that there is no vertex y2δ+1.

Because dG(x0, y0) = ecc(x0), dG(x0, y0) ≥ max{dG(x0, u), dG(x0, v)}. Therefore, by Lemma 15, dG(u, v) ≤
max{dG(u, y0), dG(v, y0)} + 2δ and, thus, diam(G) ≤ ecc(x1) + 2δ. Since dG(xi, yi) < dG(xi+1, yi+1), there is
no vertex yj with j ≥ 2δ + 1, otherwise dG(xj , yj) > diam(G). Therefore, a vertex pair x, y with ecc(x) =
ecc(y) = dG(x, y) can be found in O(δm) time as follows: Pick an arbitrary vertex x0 and find a vertex x1 with
dG(x0, x1) = ecc(x0) using a BFS. Next, find a vertex x2 such that dG(x1, x2) = ecc(x1). Repeat this (at most 2δ
times) until dG(xi, xi+1) = ecc(xi) = ecc(xi+1). ⊓⊔

Note that, if a graph has tree-length λ, its hyperbolicity is at most λ [7]. Thus, it follows:

Corollary 7. Let G be a graph with tree-length λ. Two vertices x and y in G with ecc(x) = ecc(y) = dG(x, y) can
be found in O(λm) time.

The next lemma will show that, in a graph with bounded tree-length, a shortest path between two mutually
furthest vertices gives an approximation for the MESP-problem.
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Lemma 18. Let G be a graph with tree-length λ having a shortest path with eccentricity k. Also, let x and y be two
mutually furthest vertices, i. e., ecc(x) = ecc(y) = dG(x, y). Each shortest path from x to y has eccentricity less than
or equal to k + 2.5λ.

Proof. Let P be a shortest path from s to t with eccentricity k and Q be a shortest path from x to y. Consider a
tree-decomposition T for G with length λ. We distinguish between two cases: (1) There is a bag in T containing a
vertex of P and a vertex of Q and (2) there is no such bag in T .

Case 1: There is a bag in T containing a vertex of P and a vertex of Q. We define bags Bx and By as follows:
Both contain a vertex of P and a vertex of Q, Bx is a bag closest to a bag containing x, By is a bag closest to a
bag containing y, and the distance between Bx and By in T is maximal. Let {B0, B1, . . . , Bl} be a subpath of the
shortest path from Bx to By in T such that B0 is a bag closest to a bag containing s, Bl is a bag closest to a bag
containing t, Bi is adjacent to Bi+1 in T (0 ≤ i < l), and the distance l between B0 and Bl is maximal. Without
loss of generality, let dT (Bx, B0) ≤ dT (Bx, Bl). Let ps be the vertex in B0 ∩ P which is closest to s in G and let pt
be the vertex in Bl ∩ P which is closest to t in G. Figure 2 gives an illustration.

pt
ps

Bx = B0 Bl By

s t

x y

Fig. 2. Example for a possible tree-decomposition.

Claim. For each vertex p ∈ P with dG(s, ps) ≤ dG(s, p) ≤ dG(s, pt), dG(p,Q) ≤ 1.5λ.

Proof (Claim). There is a vertex set {ps = p0, p1, . . . , pl, pl+1 = pt} ⊆ P , where pi ∈ Bi−1 ∩ Bi for all positive
i ≤ l. Because pi, pi+1 ∈ Bi for 0 ≤ i ≤ l, dG(pi, pi+1) ≤ λ. Thus, because P is a shortest path, for all p′ ∈ P
with dG(s, ps) ≤ dG(s, p

′) ≤ dG(s, pt) there is a vertex pi with 0 ≤ i ≤ l + 1 such that dG(pi, p
′) ≤ 0.5λ.

By definition of T , each bag Bi (0 ≤ i ≤ l) contains a vertex q ∈ Q, i. e., dG(pi, Q) ≤ λ (0 ≤ i ≤ l + 1).
Therefore, for all p′ ∈ P with dG(s, ps) ≤ dG(s, p

′) ≤ dG(s, pt) there is a vertex pi with 0 ≤ i ≤ l + 1 such that
dG(p

′, Q) ≤ dG(pi, p
′) + dG(pi, Q) ≤ 1.5λ. ♦

Consider an arbitrary vertex v in G. Let v′ be a vertex in P closest to v and let Pv be a shortest path from v to v′. If
v′ is between ps and pt, i. e., dG(s, ps) ≤ dG(s, v

′) ≤ dG(s, pt), by the claim above, dG(v,Q) ≤ dG(v, v
′)+dG(v

′, Q) ≤
k + 1.5λ. If Pv intersects a bag containing a vertex q ∈ Q, dG(v,Q) ≤ k + λ.

Next, consider the case when Pv does not intersect a bag containing a vertex of Q and (without loss of generality)
dG(s, v

′) > dG(s, pt). In this case, each path from x to v intersects Bl.

Claim. There is a vertex u ∈ Bl such that dG(u, y) ≤ k + 0.5λ.

Proof (Claim). Let y′ be a vertex in P that is closest to y and let Py be a shortest path from y to y′. If Py

intersects Bl, there is a vertex u ∈ Py ∩Bl with dG(y, u) ≤ k.
If Py does not intersect Bl, there is a subpath of P starting at pt, containing y

′, and ending in a vertex pl ∈ Bl.
Because dG(pt, pl) ≤ λ, dG(y

′, {pt, pl}) ≤ 0.5λ. Therefore, dG(y, {pt, pl}) ≤ dG(y, y
′)+dG(y

′, {pt, pl}) ≤ k+0.5λ. ♦
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Let u, v′, and z be vertices in Bl such that dG(u, y) ≤ k + 0.5λ, v′ is on a shortest path from x to v, and z ∈ Q.
Because dG(x, y) = ecc(x), dG(x, v

′) + dG(v
′, v) ≤ dG(x, y). Also, by the triangle inequality, dG(x, y) ≤ dG(x, v

′) +
dG(v

′, y) and dG(v
′, y) ≤ dG(v

′, u) + dG(u, y). Because {u, v′, z} ⊆ Bl and dG(u, y) ≤ k + 0.5λ, dG(v
′, v) ≤ k + 1.5λ

and therefore dG(z, v) ≤ k + 2.5λ.
Thus, if there is a bag in T containing a vertex of P and a vertex of Q, dG(v,Q) ≤ k+2.5λ for all vertices v in G.

Case 2: There is no bag in T containing vertices of P and Q. Because there is no such bag, T contains a bag B
such that each path from x and y to P intersects B and there is a vertex z ∈ B ∩Q.

Consider an arbitrary vertex v. If there is a shortest path Pv from v to P which intersects B, then dG(z, v) ≤ k+λ.
If there is no such path, each path from x to v intersects B. Let v′ ∈ B be a vertex on a shortest path from x to v
and let u ∈ B be a vertex on a shortest path from y to P . Note that dG(u, y) ≤ k.

Because dG(x, y) = ecc(x), dG(x, v
′)+dG(v

′, v) ≤ dG(x, y). Also, by the triangle inequality, dG(x, y) ≤ dG(x, v
′)+

dG(v
′, y) and dG(v

′, y) ≤ dG(v
′, u) + dG(u, y). Because {u, v′, z} ⊆ B and dG(u, y) < k, dG(v

′, v) < k + λ and
therefore dG(z, v) < k + 2λ.

Thus, if there is no bag in T containing vertices of P and Q, dG(v,Q) < k + 2λ for all vertices v in G. ⊓⊔

In [7], it was shown that an n-vertex δ-hyperbolic graph has tree-length at most O(δ log n).

Corollary 8. Let G be a graph with hyperbolicity δ having a shortest path with eccentricity k. Also, let x and y be
two mutually furthest vertices, i. e., ecc(x) = ecc(y) = dG(x, y). Each shortest path from x to y has eccentricity less
than or equal to k + O(δ log n).

Lemma 17, Lemma 18, Corollary 7, and Corollary 8 imply our main result of this section:

Theorem 5. Let G be a graph having a shortest path with eccentricity k. If G has tree-length λ, a shortest path with
eccentricity at most k + 2.5λ can be found in O(λm) time. If G has hyperbolicity δ, a shortest path with eccentricity
at most k +O(δ log n) can be found in O(δm) time.

A graph is chordal if and only if it has tree-length 1 [18].

Corollary 9. If G is a chordal graph and has a shortest path with eccentricity k, a shortest path in G with eccentricity
at most k + 2 can be found in linear time.

Figure 3 gives an example that, for chordal graphs, k + 2 is a tight upper bound for the eccentricity of the
determined shortest path.

uu′

vv′

ws

Fig. 3. A chordal graph G. A shortest path from s to v passing v′ has eccentricity 2 which is the minimum for all shortest
paths in G. The diametral path from s to u passing u′ has eccentricity 4 because of its distance to w.

6 Conclusion

We have investigated the Minimum Eccentricity Shortest Path problem for some structured graph classes. For these
classes, we were able to present linear or polynomial time algorithms. Additionally, we presented a simple algorithm
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Table 1. Runtime for solving the Minimum Eccentricity Shortest Path problem for some graph classes. Also, if the solution is
not optimal, the maximal difference to an optimal solution is shown.

Graph class Runtime Approx.

distance-hereditary linear

chordal O(n2m)
linear +2

dually chordal O(n3m)

tree-length λ O(n3λ+3)
O(λm) +2.5λ

tree-breadth ρ O(n6ρ+3)

δ-hyperbolic O(n4δ+4)
O(δm) +O(δ logn)

which gives an additve approximation in linear time for chordal graphs, in O(λm) time for graphs with tree-length λ,
and in O(δm) time for graphs with hyperbolicity δ. Table 1 gives an overview of our results.

One reason why the runtime to find an optimal path for distance-hereditary graphs is linear is that we can
determine the start and end vertices of an optimal path in linear time for these graphs. For the other classes,
the algorithm iterates over all possible start vertices s. We know that, for general graphs, the problem remains
NP-complete even if a start-end vertex pair is given (see the reduction in [14]). Also, we have shown that there is a
shortest path with minimum eccentricity between every diametral pair of vertices of a distance-hereditary graph
(Theorem 1). This leads to the following question: How hard is it to determine the start and end vertices of an
optimal path? This question applies to general graphs as well as to special graph classes like chordal graphs.

Another interesting question is, for which other graph classes the problem remains NP-complete or can be solved
in polynomial time. The NP-completeness proof in [14] uses a reduction from SAT. There is a planar version of
3-SAT (see [21]). Does this imply that the problem remains NP-complete for planar graphs?
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