Skip to main content

Beyond Classes of Graphs with “Few” Minimal Separators: FPT Results Through Potential Maximal Cliques

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9224))

Included in the following conference series:

  • 711 Accesses

Abstract

In many graph problems, like Longest Induced Path, Maximum Induced Forest, etc., we are given as input a graph G and the goal is to compute a largest induced subgraph G[F], of treewidth at most a constant t, and satisfying some property \(\mathcal {P}\). Fomin et al. [12] proved that this generic problem is polynomial on the class of graphs \({\mathcal {G}}_{{\text {poly}}}\), i.e., the graphs having at most \({\text {poly}}(n)\) minimal separators for some polynomial \({\text {poly}}\), when property \(\mathcal {P}\) is expressible in counting monadic second order logic (CMSO).

Here we consider the class \({\mathcal {G}}_{{\text {poly}}}+ kv\), formed by graphs of \({\mathcal {G}}_{{\text {poly}}}\) to which we may add a set of at most k vertices with arbitrary adjacencies, called modulator. We prove that the generic optimization problem is fixed parameter tractable on \({\mathcal {G}}_{{\text {poly}}}+ kv\), with parameter k, if the modulator is also part of the input. The running time is of type \(\mathcal {O}\left( f(k+t, \mathcal {P})\cdot n^{t+5} \cdot ({\text {poly}}(n)^2)\right) \), for some function f.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berry, A., Bordat, J.P., Cogis, O.: Generating all the minimal separators of a graph. Int. J. Found. Comput. Sci. 11(3), 397–403 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L.: Fixed-parameter tractability of treewidth and pathwidth. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revolution and Beyond. LNCS, vol. 7370, pp. 196–227. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borie, R.B., Gary Parker, R., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7(5–6), 555–581 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal separators. SIAM J. Comput. 31(1), 212–232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comput. Sci. 276(1–2), 17–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cameron, K., Hell, P.: Independent packings in structured graphs. Math. Program. 105(2–3), 201–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  11. Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameterized by vertex cover and modular width, through potential maximal cliques. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 182–193. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  12. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations and CMSO. SIAM J. Comput. 44(1), 54–87 (2015)

    Article  MathSciNet  Google Scholar 

  13. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: STACS 2010, LIPIcs, pp. 383–394. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

    Google Scholar 

  14. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Logic 130(1–3), 3–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  16. Heggernes, P., van’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Parameterized complexity of vertex deletion into perfect graph classes. Theor. Comput. Sci. 511, 172–180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lagergren, J.: Upper bounds on the size of obstructions and intertwines. J. Comb. Theor. Ser. B 73(1), 7–40 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mancini, F.: Minimum fill-in and treewidth of split+ke and split+kv graphs. Discrete Appl. Math. 158(7), 747–754 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marx, D.: Parameterized coloring problems on chordal graphs. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 83–95. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theor. Ser. B 92(2), 325–357 (2004). Special Issue Dedicated to Professor W.T. Tutte

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Fedor Fomin and Nicolas Nisse for fruitful discussions on this subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Todinca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liedloff, M., Montealegre, P., Todinca, I. (2016). Beyond Classes of Graphs with “Few” Minimal Separators: FPT Results Through Potential Maximal Cliques. In: Mayr, E. (eds) Graph-Theoretic Concepts in Computer Science. WG 2015. Lecture Notes in Computer Science(), vol 9224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53174-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53174-7_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53173-0

  • Online ISBN: 978-3-662-53174-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics