Skip to main content

An \(\mathcal {O}(n^2)\) Time Algorithm for the Minimal Permutation Completion Problem

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9224))

Included in the following conference series:

  • 649 Accesses

Abstract

We provide an \(O(n^2)\) time algorithm computing a minimal permutation completion of an arbitrary graph \(G=(V,E)\), i.e., a permutation graph \(H = (V,F)\) on the same vertex set, such that \(E \subseteq F\) and F is inclusion-minimal among all possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common intervals of K permutations, with applications to modular decomposition of graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 779–790. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Discrete Appl. Math. 154(13), 1824–1844 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Crespelle, C., Paul, C.: Fully dynamic algorithm for recognition and modular decomposition of permutation graphs. Algorithmica 58(2), 405–432 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crespelle, C., Todinca, I.: An \(O(n^{2})\)-time algorithm for the minimal interval completion problem. Theor. Comput. Sci. 494, 75–85 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Heggernes, P.: Minimal triangulations of graphs: a survey. Discrete Math. 306(3), 297–317 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Heggernes, P., Mancini, F., Papadopoulos, C.: Minimal comparability completions of arbitrary graphs. Discrete Appl. Math. 156(5), 705–718 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time \({O}(n^{\alpha \log n}) = o(n^{2.376})\). SIAM J. Discrete Math. 19(4), 900–913 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Heggernes, P., Mancini, F.: Minimal split completions. Discrete Appl. Math. 157(12), 2659–2669 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lokshtanov, D., Mancini, F., Papadopoulos, C.: Characterizing and computing minimal cograph completions. Discrete Appl. Math. 158(7), 755–764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mancini, F.: Graph Modification Problems Related to Graph Classes. Ph.D. thesis, University of Bergen, Norway (2008)

    Google Scholar 

  11. Ohtsuki, T., Mori, H., Kashiwabara, T., Fujisawa, T.: On minimal augmentation of a graph to obtain an interval graph. J. Comput. Syst. Sci. 22(1), 60–97 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ohtsuki, T.: A fast algorithm for finding an optimal ordering for vertex elimination on a graph. SIAM J. Comput. 5(1), 133–145 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rapaport, I., Suchan, K., Todinca, I.: Minimal proper interval completions. Inf. Process. Lett. 5, 195–202 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM. J. Algebraic Discrete Methods 2(1), 77–79 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Crespelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crespelle, C., Perez, A., Todinca, I. (2016). An \(\mathcal {O}(n^2)\) Time Algorithm for the Minimal Permutation Completion Problem. In: Mayr, E. (eds) Graph-Theoretic Concepts in Computer Science. WG 2015. Lecture Notes in Computer Science(), vol 9224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53174-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53174-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53173-0

  • Online ISBN: 978-3-662-53174-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics