Abstract
We provide an \(O(n^2)\) time algorithm computing a minimal permutation completion of an arbitrary graph \(G=(V,E)\), i.e., a permutation graph \(H = (V,F)\) on the same vertex set, such that \(E \subseteq F\) and F is inclusion-minimal among all possibilities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common intervals of K permutations, with applications to modular decomposition of graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 779–790. Springer, Heidelberg (2005)
Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Discrete Appl. Math. 154(13), 1824–1844 (2006)
Crespelle, C., Paul, C.: Fully dynamic algorithm for recognition and modular decomposition of permutation graphs. Algorithmica 58(2), 405–432 (2010)
Crespelle, C., Todinca, I.: An \(O(n^{2})\)-time algorithm for the minimal interval completion problem. Theor. Comput. Sci. 494, 75–85 (2013)
Heggernes, P.: Minimal triangulations of graphs: a survey. Discrete Math. 306(3), 297–317 (2006)
Heggernes, P., Mancini, F., Papadopoulos, C.: Minimal comparability completions of arbitrary graphs. Discrete Appl. Math. 156(5), 705–718 (2008)
Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time \({O}(n^{\alpha \log n}) = o(n^{2.376})\). SIAM J. Discrete Math. 19(4), 900–913 (2005)
Heggernes, P., Mancini, F.: Minimal split completions. Discrete Appl. Math. 157(12), 2659–2669 (2009)
Lokshtanov, D., Mancini, F., Papadopoulos, C.: Characterizing and computing minimal cograph completions. Discrete Appl. Math. 158(7), 755–764 (2010)
Mancini, F.: Graph Modification Problems Related to Graph Classes. Ph.D. thesis, University of Bergen, Norway (2008)
Ohtsuki, T., Mori, H., Kashiwabara, T., Fujisawa, T.: On minimal augmentation of a graph to obtain an interval graph. J. Comput. Syst. Sci. 22(1), 60–97 (1981)
Ohtsuki, T.: A fast algorithm for finding an optimal ordering for vertex elimination on a graph. SIAM J. Comput. 5(1), 133–145 (1976)
Rapaport, I., Suchan, K., Todinca, I.: Minimal proper interval completions. Inf. Process. Lett. 5, 195–202 (2008)
Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)
Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM. J. Algebraic Discrete Methods 2(1), 77–79 (1981)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Crespelle, C., Perez, A., Todinca, I. (2016). An \(\mathcal {O}(n^2)\) Time Algorithm for the Minimal Permutation Completion Problem. In: Mayr, E. (eds) Graph-Theoretic Concepts in Computer Science. WG 2015. Lecture Notes in Computer Science(), vol 9224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53174-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-662-53174-7_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-53173-0
Online ISBN: 978-3-662-53174-7
eBook Packages: Computer ScienceComputer Science (R0)