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Abstract. We consider nonatomic network games with one source and
one destination. We examine the asymptotic behavior of the price of
anarchy as the inflow increases. In accordance with some empirical ob-
servations, we show that, under suitable conditions, the price of anarchy
is asymptotic to one. We show with some counterexamples that this is
not always the case. The counterexamples occur in very simple parallel
graphs.

1 Introduction

The analysis of network routing costs and their efficiency goes back at least to
Pigou [23], who, in the first edition of his book introduces his famous two-road
model. Wardrop [30] develops a model where many players (vehicles on the road)
choose a road in order to minimize their cost (traveling time) and the influence
of each one of them, singularly taken, is negligible. He introduces a concept of
equilibrium that has become the standard in the literature on nonatomic network
games.

When travelers minimize their traveling time without considering the nega-
tive externalities that their behavior has on other travelers, the collective out-
come of the choices of all travelers is typically inefficient, i.e., it is worse than
the outcome that a benevolent planner would have achieved. Various measures
have been proposed to quantify this inefficiency. Among them the price of anar-
chy has been the most successful. Introduced by Koutsoupias and Papadimitriou
[15] and given this name by Papadimitriou [21], it is the ratio of the worst social
equilibrium cost and the optimum cost. The price of anarchy has been studied
by several authors and interesting bounds for it have been found under some
conditions on the cost functions.

Most of the existing results about the price of anarchy consider worst-case
scenarios. These results are not necessarily helpful in specific situations. In a
nice recent paper O’Hare et al. [20] show, both theoretically and with the aid of
simulations, how the price of anarchy is affected by changes in the total inflow
of players. They consider data for three cities and they write

In each city, it can be seen that there are broadly three identifiably distinct
regions of behaviour: an initial region in which the Price of Anarchy is one; an
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intermediate region of fluctuations; and a final region of decay, which has a simi-
lar characteristic shape across all three networks. The similarities in this general
behaviour across the three cities suggest that there may be common mechanisms
that drive this variation.

The core of the paper by [20] is an analysis of the intermediate fluctuations.
In our paper we will mainly look at the asymptotic behavior of the price of
anarchy. We consider nonatomic congestion games with single source and single
destination. We show that for a large class of cost functions the price of anarchy
is, indeed, asymptotic to one, as the mass of players grows. Nevertheless, we can
find counterexamples where its lim sup is not 1 and it can even be infinite.

Contribution The goal of this paper is twofold. On one hand we provide some
positive results that show that under some conditions the price of anarchy of
nonatomic network games is indeed asymptotic to one. On the other hand, we
present some counterexamples where the lim sup of the price of anarchy is not
one.

In particular, first we show that, for any single-source, single-destination
graph, the price of anarchy is asymptotic to one whenever the cost of at least
one path is bounded. Then we move the analysis to parallel graphs and we show
that in this class the price of anarchy is asymptotic to one for a large class of
cost functions that we characterize in terms of regularly varying functions (see
[3] for properties of these functions). This class of cost functions includes affine
functions and cost functions that can be bounded by a pair of affine functions
with the same slope.

Counterexamples can be found where the behavior of the price of anarchy is
periodic on a logarithmic scale, therefore its lim sup is larger than one both as the
mass of players grows unbounded and as it goes to zero. In another counterex-
ample the lim sup of the price of anarchy is infinite. A further counterexample
shows that the price of anarchy may not converge to one even for convex cost
functions. What is interesting is that all the counterexamples concern a very sim-
ple parallel graph with just two edges. Therefore the bad behavior of the price
of anarchy depends solely on the costs and not on the topology of the graph.
This is in stark contrast with the results in [20], where the irregular behavior of
the price of anarchy in the intermediate region of inflow heavily depends on the
structure of the graph.

Related literature Wardrop’s nonatomic model has been studied by Beck-
mann et al. [2] and many others. The formal foundation of games with a con-
tinuum of players came with Schmeidler [29] and then with Mas Colell [17].
Nonatomic congestion games have been studied, among others, by Milchtaich
[18,19].

Various bounds for the price of anarchy in nonatomic games have been
proved, under different conditions. In particular Roughgarden and Tardos [26]
prove that, when the cost functions are affine, the price of anarchy in nonatomic
games is at most 4/3, irrespective of the topology of the network. The bound



is sharp and is attained even in very simple networks. Several authors have ex-
tended this bound to larger classes of functions. Roughgarden [24] shows that if
the class of cost functions includes the constants, then the worst price of anarchy
is achieved on parallel networks with just two edges. In his paper he considers
bounds for the price of anarchy when the cost functions are polynomials whose
degree is at most d. Dumrauf and Gairing [8] do the same when the degrees of
the polynomials are all between s and d. Roughgarden and Tardos [27] provide a
unifying result for the class of standard costs, i.e., costs c that are differentiable
and such that xc(x) is convex. Correa et al. [5] consider the price of anarchy
for networks where edges have a capacity and costs are not necessarily convex,
differentiable, or even continuous. In [7] they reinterpret and extend these results
using a geometric approach. In [6] they consider the problem of minimizing the
maximum latency rather than the average latency and provide results about the
price of anarchy in this framework. The reader is referred to [28,25] for a survey
of the literature.

Some papers show how in real life the price of anarchy may substantially
differ from the worst-case scenario, [31,16]. The papers González Vayá et al. [12]
deal with a problem of optimal schedule for the electricity demand of a fleet of
plug-in electric vehicles. Without using the term, they show that the price of
anarchy goes to one as the number of vehicles grows. Cole and Tao [4] study
large Walrasian auctions and large Fisher markets and show that in both cases
the price of anarchy goes to one as the market size increases. Feldman et al. [10]
define a concept of (λ, µ)-smoothness for sequences of games, and show that the
price of anarchy in atomic congestion games converges to the price of anarchy of
the corresponding nonatomic game, when the number of players grows. [22] and
[14] perform sensitivity analysis of Wardrop equilibrium to some parameters of
the model. Closer to the scope of our paper, Englert et al. [9] examine how the
equilibrium of a congestion game changes when either the total mass of players
is increased by ε or an edge that carries an ε fraction of the mass is removed.
For polynomial cost functions they bound the increase of the equilibrium cost
when a mass ε of players is added to the system.

2 The model

Consider a finite directed multigraph G = (V,E), where V is a set of vertices
and E is a set of edges. The graph G together with a source s and a destination t
is called a network. A path P is a set of consecutive edges that go from source to
destination. Call P the set of all paths. Each path P has a flow xP ≥ 0 and call
x = (xP )P∈P . The total flow from source to destination is denoted by M ∈ R+.
A flow x is feasible if

∑
P∈P xP = M . Call FM the set of feasible flows. For

each edge e ∈ E there exists a cost function ce(·) : R+ → R+, that is assumed
(weakly) increasing and continuous. Call c = (ce)e∈E . This defines a nonatomic
congestion game ΓM = (G ,M, c). The number M can be seen as the mass of
players who play the game.



The cost of a path P with respect to a flow x is the sum of the cost of its
edges: cP (x) =

∑
e∈P ce(xe), where

xe =
∑
P∈P:
e∈P

xP .

For each flow x define the social cost associated to it as

C(x) :=
∑
P∈P

xP cP (x) =
∑
e∈E

xece(xe).

A flow x∗ is an equilibrium flow if for every P,Q ∈P such that x∗P > 0 we
have cP (x∗) ≤ cQ(x∗). Call E (ΓM ) the set of equilibrium flows in ΓM and define
WEq(ΓM ) = maxx∈E (ΓM ) C(x) the worst equilibrium cost of ΓM . Actually, in
the present setting the cost C(x∗) is the same for every equilibrium x∗ (see [11]).

A flow x̃ is an optimum flow if C(x̃) = minx∈FM
C(x). Call O(ΓM ) the

set of optimum flows in ΓM and define Opt(ΓM ) = C(x̃), for x̃ ∈ O(ΓM ) the
optimum cost of ΓM .

The price of anarchy of the game ΓM is defined as

PoA(ΓM ) :=
WEq(ΓM )

Opt(ΓM )
.

We will be interested in the price of anarchy of this game, as M →∞. We will
show that, under some conditions, it is asymptotic to one. We call asymptotically
well behaved the congestion games for which this happens.

3 Well behaved congestion games

3.1 General result

The following general result shows that for any network the price of anarchy is
asymptotic to one when at least one path has a bounded cost.

Theorem 1. For each path P ∈P denote

c∞P =
∑
e∈P

c∞e with c∞e = lim
z→∞

ce(z)

and suppose that B := minP∈P c∞P is finite. Then, limM→∞ PoA(ΓM ) = 1.

Proof. Let x∗ be an equilibrium for ΓM . Then if x∗P > 0 we have

cP (x∗) = min
Q∈P

cQ(x∗) ≤ min
Q∈P

c∞Q = B

and therefore

WEq(ΓM ) =
∑
P∈P

x∗P cP (x∗) ≤
∑
P∈P

x∗PB = MB.



It follows that

PoA(ΓM ) ≤ MB

Opt(ΓM )
,

so that it suffices to prove that Opt(ΓM )/M → B. To this end denote ∆(P) the
simplex defined by y = (yP )P∈P ≥ 0 and

∑
P∈P yP = 1, so that

1

M
Opt(ΓM ) = min

x∈FM

∑
P∈P

xP
M
cP (x)

= min
y∈∆(P)

∑
P∈P

yP cP (My).

Denote ΦM (y) =
∑
P∈P yP cP (My). Since the cost functions ce(·) are non-

decreasing, the family ΦM (·) monotonically increases with M towards the limit
function

Φ∞(y) =
∑

P∈P:yP>0

yP c
∞
P .

Now we use the fact that a monotonically increasing family of functions epi-
converges (see [1]) and since ∆(P) is compact it follows that the minimum
miny∈∆(P) ΦM (y) converges as M →∞ towards

min
y∈∆(P)

Φ∞(y).

Clearly this latter optimal value is B and is attained by setting yP > 0 only on
those paths P that attain the smallest value c∞P = B, and therefore we conclude

1

M
Opt(ΓM ) = min

y∈∆(P)
ΦM (y)→ B,

as was to be proved. ut

3.2 Parallel graphs

In this section we examine the asymptotic behavior of the price of anarchy when
the game is played on a parallel graph.

Let G = (V,E) be a parallel graph such that V = {s, t} are the vertices and
E = {e1, e2, . . . , en} are the edges, as in Figure 1. For each edge ei ∈ E the
function ci(·) represents the cost function of the edge ei. Call ΓM = (G ,M, c)
the corresponding game. In the whole section we will deal with this graph.

Adding a constant to costs First we prove a preservation result. We show
that if the price of anarchy of a game converges to 1, then adding positive
constants to each cost does not alter this asymptotic behavior.

Theorem 2. Given a game ΓM = (G ,M, c) and a vector a ∈ [0,∞)n, consider
a new game Γa

M (G ,M, ca), where

cai (x) = ai + ci(x).

If ci(·) is strictly increasing and continuous, limx→∞ ci(x) = ∞ for all ei ∈ E,
and limM→∞ PoA(ΓM ) = 1, then limM→∞ PoA(Γa

M ) = 1.



s ... t

e1

e2

em−1

en

Fig. 1. General parallel network.

Regularly varying functions

Definition 3. Let β ≥ 0. A function Θ : (0,+∞) → (0,+∞) is called β-
regularly varying if for all a > 0

lim
x→∞

Θ(a · x)

Θ(x)
= aβ ∈ (0,+∞).

When β = 1, we just say that the function is regularly varying.

The following theorem shows that asymptotically the price of anarchy goes
to 1 for a large class of cost functions.

Theorem 4. Consider the game ΓM and suppose that for some β > 0 there
exists a β-regularly varying function c(·) ∈ C1 such that the function x 7→
c(x) +xc′(x) is strictly increasing and for all ei ∈ E the function ci(·) is strictly
increasing and continuous with

lim
x→∞

c−1 ◦ ci(x)

x
= αi ∈ (0,+∞] (1)

and that at least one αi is finite. Then

lim
M→∞

PoA(ΓM ) = 1.

Proof. We begin by noting that if some cost ci(·) is bounded, then the result
follows directly from Theorem 1. Suppose now that ci(x) → ∞ when x → ∞
in all links and consider first the case where all the αi are finite. In this case
the equilibrium flows x∗i must diverge to ∞ as M → ∞ and the equilibrium is
characterized by ci(x

∗
i ) = λ. This allows to derive an upper bound for the cost

of the equilibrium. That is, (1) implies that for small ε > 0 we have

c−1 ◦ c(x∗i )
x∗i

=
c−1(λ)

x∗i
∈ (αi − ε, αi + ε),



provided M is large enough. It then follows that

n∑
i=1

c−1(λ)

αi + ε
≤

n∑
i=1

x∗i = M,

so that, denoting

a(ε) =

(
n∑
i=1

1

αi + ε

)−1
,

we get λ ≤ c(Ma(ε)) and

WEq = Mλ ≤Mc(Ma(ε)).

Next we derive a lower bound for the optimal cost

Opt(ΓM ) = min
x∈FM

n∑
i=1

xici(xi).

We note that when M →∞ the optimal solutions are such that xi(M)→∞ so
that using (1) and the fact that αi − ε > 0 we get for all M large enough

min
x∈FM

n∑
i=1

xici(xi) ≥ min
x∈FM

n∑
i=1

xic((αi − ε)xi).

The optimality condition for the latter yields

c((αi − ε)xi) + (αi − ε)xic′((αi − ε)xi) = µ.

For the sake of brevity we denote c̃(x) = c(x) + xc′(x) and yi = (αi − ε)xi so
that the optimality condition becomes c̃(yi) = µ. This yields yi = c̃−1(µ) and
therefore

M =

n∑
i=1

xi =

n∑
i=1

c̃−1(µ)

αi − ε
.

Denoting

b(ε) =

(
n∑
i=1

1

αi − ε

)−1
,

we then get µ = c̃(Mb(ε)) and we obtain the following lower bound for the
optimal cost

Opt(ΓM ) ≥ min
x∈FM

n∑
i=1

xic((αi − ε)xi) = Mc(c̃−1(µ)) = Mc(Mb(ε)).

Combining the previous bounds we obtain the following estimate for the price
of anarchy

PoA(ΓM ) ≤ Mc(Ma(ε))

Mc(Mb(ε))
.



Letting M →∞ and using the fact that c is β-regularly varying we deduce

lim sup
M→∞

PoA(ΓM ) ≤
(
a(ε)

b(ε)

)β
and since a(ε)/b(ε)→ 1 as ε→ 0 we conclude

lim sup
M→∞

PoA(ΓM ) = 1.

If some αi =∞, then call I0 := {i : αi <∞}. In equilibrium

M =

n∑
i=1

c−1i (λ) ≥
∑
i∈I0

c−1i (λ) ≥
∑
i∈I0

1

αi + ε
c−1(λ),

hence

λ ≤ c

M (∑
i∈I0

1

αi + ε

)−1 .

In the optimum proceed as before with α′i ↗ αi. ut

The following results follow easily from Theorem 4.

Corollary 5. In the game ΓM if for all i ∈ E we have limx→∞ ci(x)/x = mi ∈
(0,+∞] and at least one mi <∞, then

lim
M→∞

PoA(ΓM ) = 1.

Corollary 6. In the game ΓM if for all i ∈ E we have limx→∞ c′i(x) = mi with
mi ∈ (0,+∞] and at least one mi is finite, then

lim
M→∞

PoA(ΓM ) = 1.

Corollary 7. In the game ΓM if for all i ∈ E for some β > 0 there exists a
β-regularly varying function c(·) such that

lim
x→∞

ci(x)

c(x)
= mi ∈ (0,+∞], (2)

and at least one mi is finite, then

lim
M→∞

PoA(ΓM ) = 1.

Corollary 8. In the game ΓM if, for all ei ∈ E, ci(x) = ai + bix, then

lim
M→∞

PoA(ΓM ) = 1.



Costs bounded by affine functions The next theorem examines the case
where each cost function is bounded above and below by two affine functions
with the same slope, as in Figure 6.

Theorem 9. Consider the game ΓM and assume that for every ei ∈ E

`i(x) := ai + bix ≤ ci(x) ≤ αi + bix =: Li(x).

Then
lim
M→∞

PoA(ΓM ) = 1.

4 Ill behaved games

In this section we will consider some examples where the price of anarchy is not
asymptotic to one, as the inflow goes to infinity.

Consider a standard Pigou graph and assume that the costs are as follows:

c1(x) = x,

c2(x) = ak for x ∈ (ak−1, ak], k ∈ Z,
(3)

with a ≥ 2, as in Figure 2. In this game the cost of one edge is the identity,
whereas for the other edge it is a step function that touches the identity at
intervals that grow exponentially. The cost function c2 is not continuous, but
a very similar game can be constructed by approximating it with a continuous
function.

y

x

ce1(x)

ce2(x)

ce2(x)

ce1(x)

Fig. 2. Step function.



Theorem 10. Consider the game ΓM with costs as in (3). We have

lim inf
M→∞

PoA(ΓM ) = 1, lim sup
M→∞

PoA(ΓM ) =
4 + 4a

4 + 3a
.

Remark 11. We can immediately see that

lim sup
M→∞

PoA(ΓM ) =
6

5
for a = 2

and

lim sup
M→∞

PoA(ΓM )→ 4

3
as a→∞.

The proof of Theorem 10 shows that there is a periodic behavior of the price
of anarchy (on a logarithmic scale). This implies that

lim inf
M→0

PoA(ΓM ) = 1, lim sup
M→0

PoA(ΓM ) =
4 + 4a

4 + 3a
.

That is, even for very small values of M the price of anarchy is not necessarily
close to 1.

Figure 3 plots the price of anarchy for M ∈ [2ak, 2ak+1], when a = 3.

8 10 12 14 16 18

1.05

1.10

1.15

1.20

Fig. 3. Price of anarchy for M ∈ [2ak, 2ak+1], with a = 3, k = 1.

The next theorem shows that the price of anarchy may fail to be asymptotic
to one, even when the cost functions are all convex.

Theorem 12. There exist congestion games ΓM where the cost functions are
all increasing and convex and both

lim sup
M→∞

PoA(ΓM ) > 1 and lim sup
M→0

PoA(ΓM ) > 1.

The next theorem shows that the lim sup of the price of anarchy may even
be infinite.

Theorem 13. There exist congestion games ΓM where lim supM→∞ PoA(ΓM ) =
∞.
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A Regularly varying functions

The reader is referred to [3] for an extended treatment of regularly varying
functions. We study here some properties that are useful for our results.

Lemma 14. Let β > 0 and let Θ be a continuous and strictly increasing func-
tion, then the following definitions are equivalent:

(a) the function Θ is β-regularly varying,
(b) the function Θ−1 is 1

β -regularly varying,

(c) for all γ > 0

lim
t→∞

1

t
Θ−1(γΘ(t)) = γ1/β .

Proof. The equivalence of (a) and (b) is proved in [13] at page 22.
The equivalence of (b) and (c) is immediate, since, by setting u = Θ(t), we

have
1

t
Θ−1(γ ·Θ(t)) =

Θ−1(γ · u)

Θ−1(u)
→ γ1/β . ut

Lemma 15. If Θ is a continuous and strictly increasing β-regularly varying
function, then x ·Θ(x) and

∫ x
0
Θ(s) ds are (1 + β)-regularly varying functions.

Proof. Let’s first discuss the function x ·Θ(x). Observe that

lim
x→∞

axΘ(ax)

xΘ(x)
= a · aβ = a1+β .

Similarly,

lim
x→∞

∫ ax
0
Θ(s) ds∫ x

0
Θ(s) ds

= lim
x→∞

Θ(ax)a

Θ(x)
= aβa = a1+β . ut

The following two lemmata appear in Proposition 1.5.7 in [3].

Lemma 16. For i = 1, 2, let Θi be a continuous and strictly increasing βi-
regularly varying function. Then Θ1 ◦Θ2 is β1 · β2-regularly varying.

Lemma 17. Let Θ1 and Θ2 be two continuous and strictly increasing β-regularly
varying functions, then Θ1 +Θ2 is β-regularly varying.

B Omitted proofs

Proofs of Section 3

Proof (of Theorem 2). If some ci(·) remains bounded the conclusion follows from
Theorem 1, so we focus on the case where ci(x)→∞ as x→∞ for all i. In this
case all the equilibrium flows x∗i must diverge to ∞ as M → ∞. In particular
they will be all positive and the equilibrium is characterized by ci(x

∗
i ) = λ for



some λ → ∞ as M → ∞. In fact, since
∑n
i=1 x

∗
i = M we can get λ by solving

the equation g(λ) = M where g(λ) =
∑
ei∈E c

−1
i (λ).

The same applies to Γa
M . Call λa the cost at the equilibrium on each edge in

Γa
M and xa the equilibrium of Γa

M . Then we have ai + ci(x
a
i ) = λa so that

M =
∑
ei∈E

c−1i (λa − ai).

Denoting a := minei∈E ai and ā : maxei∈E ai, the monotonicity of ci(·) gives

g(λa − ā) ≤M ≤ g(λa − a)

and since M = g(λ) we get the inequality λa − ā ≤ λ ≤ λa − a which implies

lim
M→∞

λa

λ
= 1. (4)

Now, for the optimum we have

Opt(Γa
M ) = min

x∈FM

∑
ei∈E

xi(ai + ci(xi)) ≥ aM + Opt(ΓM )

and we derive the estimate

PoA(Γa
M ) =

Mλa

Opt(Γa
M )
≤ Mλa

aM + Opt(ΓM )
=

λa/λ

a/λ+ Opt(ΓM )
Mλ

→ 1,

which follows from the assumption Opt(ΓM )/(Mλ) = PoA(ΓM )−1 → 1, com-
bined with (4) and the fact that λ→∞. ut

Proof (of Corollary 5). Apply Theorem 4 with c equal to the identity.

Proof (of Corollary 6). Just notice that limx→∞ c′i(x) = mi implies limx→∞ ci(x)/x =
mi.

Proof (of Corollary 7). If mi < ∞, then from (2) we can derive the following
inequalities:

(mi − ε)c(x) ≤ ci(x) ≤ (mi + ε)c(x),

hence
c−1((mi − ε)c(x))

x
↓

(mi − ε)1/β

≤ c−1(ci(x))

x
≤ c−1((mi + ε)c(x))

x
↓

(mi + ε)1/β

,

by Lemma 14(b). Since

(mi − ε)1/β −−−→
ε→0

m
1/β
i and (mi + ε)1/β −−−→

ε→0
m

1/β
i ,



if we call αi = m
1/β
i , we have

c−1(ci(x))

x
→ αi

and we can apply Theorem 4.
If mi =∞, then take

m′i ≤
ci(x)

c(x)
=⇒ m′ici(x) ≤ ci(x) =⇒ c−1(m′ici(x))

x
≤ c−1(ci(x))

x
.

Now

c−1(m′ici(x))

x
−−−−→
x→∞

(m′i)
1/β −−−−−→

m′
i→∞

∞ = αi = lim
c−1(ci(x))

x
.

and the previous result can be applied. ut

Proof (of Corollary 8). The conditions in Corollary 5 are satified. ut

Proof (of Theorem 9). The results follows easily from Corollary 5. ut

Proofs of Section 4

In the whole subsection, for the sake of simplicity, we call x the flow on e1 and
y the flow on e2.

Proof (of Theorem 10). Let us study the price of anarchy for M ∈ (2ak, 2ak+1].

Equilibrium cost. In the subinterval M ∈ (2ak, ak + ak+1] we have

x∗ = M − ak, c1(x∗) = M − ak ≤ ak+1,

y∗ = ak, c2(y∗) = ak.

For M ∈ (ak + ak+1, 2ak+1] we have

x∗ = ak+1, c1(x∗) = ak+1,

y∗ = M − ak+1, c2(y∗) = ak+1.

Therefore

WEq(ΓM ) =

{
(M − ak)2 + a2k for M ∈ (2ak, ak + ak+1],

Mak+1 for M ∈ (ak + ak+1, 2ak+1].

Optimal cost. In order to compute the optimal cost

Opt(ΓM ) = min
0≤y≤M

yc2(y) + (M − y)2



we decompose the problem over the intervals Ij = (aj , aj+1] on which c2(·) is
constant, namely, we consider the subproblems

Cj = min
y∈Ij ,y≤M

aj+1y + (M − y)2.

We observe that for j ≥ k + 2 we have aj ≥ ak+2 ≥ 2ak+1 ≥ M so that Cj is
infeasible and therefore Opt(ΓM ) = min{C0, C1, . . . , Ck+1}. In fact, we will show
that Opt(ΓM ) = min{Ck−1, Ck}.

Let us compute Cj . Since (M − y)2 is symmetric around M , the constraint
y ≤M can be dropped and then the minimum Cj is obtained by projecting onto
[aj , aj+1] the unconstrained minimizer yj = M − aj+1/2. We get

Cj =


aj+1aj + (M − aj)2 if M < aj + aj+1

2 ,

aj+1(M − aj+1

2 ) + (a
j+1

2 )2 if aj + aj+1

2 ≤M ≤ aj+1 + aj+1

2 ,

aj+1aj+1 + (M − aj+1)2 if M > aj+1 + aj+1

2 .

(5)

Claim 18. For j ≤ k−1 we have Cj = aj+1aj+1+(M−aj+1)2 and Cj−1 ≥ Cj.

Proof. The expression for Cj follows from (5) if we note that M > 2ak ≥ 3
2a
j+1.

In order to prove that Cj−1 ≥ Cj we observe that

Cj−1 ≥ Cj ⇐⇒ (aj)2 + (M − aj)2 ≥ (aj)2a2 + (M − aja)2

⇐⇒ 2(aj)2 +M2 − 2Maj ≥ 2(aj)2a2 +M2 − 2Maja

⇐⇒ Maj(a− 1) ≥ (aj)2(a2 − 1)

⇐⇒ M ≥ aj(a+ 1) = aj + aj+1.

Since M > 2ak = ak + ak ≥ aj + aj+1, this holds true. ut

Claim 19. Ck+1 = ak+2ak+1 + (M − ak+1)2 ≥ Ck−1.

Proof. Since M ≤ 2ak+1 ≤ ak+1 + ak+2

2 we get the expression for Ck+1 from (5).
Then

Ck−1 ≤ Ck+1 ⇐⇒ (ak)2 + (M − ak)2 ≤ ak+2ak+1 + (M − ak+1)2

⇐⇒ 2(ak)2 +M2 − 2Mak ≤ (ak)2a3 + (ak)2a2 +M2 − 2Mak+1

⇐⇒ 2Mak(a− 1) ≤ (ak)2(a− 1)(a2 + 2a+ 2)

⇐⇒ 2M ≤ ak(a2 + 2a+ 2).

Since M ≤ 2ak+1 it suffices to have 4ak+1 ≤ ak(a2 + 2a+ 2) which is easily seen
to hold. ut

Combining the previous claims we get that Opt(ΓM ) = min{Ck−1, Ck}. It
remains to figure out which one between Ck−1 and Ck attains the minimum. This



depends on where M is located within the interval (2ak, 2ak+1] as explained in
our next claim. In the sequel we denote

α = 1 +
a

2

β = 1 +
a

2
+
√
a− 1

γ =
3

2
a

and we observe that
2 ≤ α ≤ β ≤ γ ≤ 2a.

Claim 20. For M ∈ (2ak, 2ak+1] we have

Opt(ΓM ) =


Ck−1 = (ak)2 + (M − ak)2 if M ∈ (2ak, αak)

Ck−1 = (ak)2 + (M − ak)2 if M ∈ [αak, βak)

Ck = ak+1(M − 1
4a
k+1) if M ∈ [βak, γak]

Ck = (ak+1)2 + (M − ak+1)2 if M ∈ (γak, 2ak+1].

Proof. From (5) we have Ck−1 = (ak)2 + (M − ak)2 whereas the expression for
Ck changes depending where M is located.

(a) Initial interval M ∈ (2ak, αak).
Here M < ak + 1

2a
k+1 so that (5) gives Ck = ak+1ak +(M −ak)2. Hence, clearly

Ck−1 ≤ Ck and Opt(ΓM ) = Ck−1.

(b) Final interval M ∈ (γak, 2ak+1].
Here M > γak = 3

2a
k+1 so that (5) gives Ck = (ak+1)2+(M−ak+1)2. Proceeding

as in the proof of Claim 18, we have Ck−1 ≥ Ck if and only if M ≥ ak + ak+1.
The latter holds since M ≥ 3

2a
k+1 ≥ ak+1 + ak. Hence Opt(ΓM ) = Ck.

(c) Intermediate interval M ∈ [αak, γak].
Here ak + 1

2a
k+1 ≤M ≤ 3

2a
k+1 so that (5) gives

Ck = ak+1

(
M − 1

2
ak+1

)
+

(
1

2
ak+1

)2

= ak+1

(
M − 1

4
ak+1

)
.

Then, denoting z = M/ak we have

Ck−1 ≤ Ck ⇐⇒ 2(ak)2 +M2 − 2Mak ≤ ak+1M −
(

1

2
ak+1

)2

.

⇐⇒ z2 − z(2 + a) +

(
2 +

1

4
a2
)
≤ 0

⇐⇒ 1 +
1

2
a−
√
a− 1 ≤ z ≤ 1 +

1

2
a+
√
a− 1.

The upper limit for z is precisely β while the lower limit is smaller than α. Hence
Opt(ΓM ) = Ck−1 for M ∈ [αak, βak] and Opt(ΓM ) = Ck for M ∈ [βak, γak]. ut



2ak βak ak+ak+1 3
2
ak+1 2ak+1

(ak)2 + (M−ak)2 ak+1(M− ak+1

4 )

Opt(ΓM )

(ak+1)2 + (M−ak+1)2

(ak)2 + (M−ak)2 ak+1M

WEq(ΓM )

Fig. 4. Breakpoints for optimum and equilibrium.

Figure 4 illustrates the different intervals in which the equilibrium (above)
and the optimum (below) change. Notice that Opt(ΓM ) varies continuously even
at breakpoints, whereas WEq(ΓM ) has a jump at ak + ak+1. We now proceed to
examine the price of anarchy which will be expressed as a function of z = M/ak.

From the expressions of WEq(ΓM ) and Opt(ΓM ) (see Figure 4) it follows
that PoA(ΓM ) = 1 throughout the initial interval M ∈ (2ak, βak). Over the
next interval M ∈ [βak, ak+ak+1] we have

PoA(ΓM ) =
(ak)2 + (M − ak)2

ak+1(M − ak+1/4)
=

1 + (z − 1)2

a(z − a/4)
,

which increases from 1 at z = β up to (4 + 4a2)/(a(4 + 3a)) at z = 1 + a.
At M = ak+ak+1 the equilibrium has a discontinuity and PoA(ΓM ) jumps to

(4 + 4a)/(4 + 3a) and then it decreases over the interval M ∈ (ak +ak+1, 32a
k+1)

as

PoA(ΓM ) =
ak+1M

ak+1(M − ak+1/4)
=

z

z − a/4
.

Finally, for M ∈ ( 3
2a
k+1, 2ak+1] the price of anarchy continues to decrease as

PoA(ΓM ) =
ak+1M

(ak+1)2 + (M − ak+1)2
=

az

a2 + (z − a)2
.

going back to 1 at z = 2a which corresponds to M = 2ak+1.
Thus the price of anarchy oscillates over each interval (2ak, 2ak+1] between

a minimum value of 1 and a maximum of (4 + 4a)/(4 + 3a). This completes the
proof of Theorem 10. ut

Proof (of Theorem 12). Consider a parallel network with two edges with a
quadratic cost c1(x) = x2 on the upper edge and a lower edge cost defined
by linearly interpolating c1, that is, for a ≥ 2 we let (see Figure 5)

c2(y) = (ak−1+ak)y − ak−1ak, for y ∈ [ak−1, ak], k ∈ Z.



y

x

ce2(x)

ce1(x)

Fig. 5. x2 and its linear interpolation

Note that c1 and c2 are convex. Consider the optimal cost problem

Opt(ΓM ) = min
x+y=M
x,y≥0

x3 + yc2(y).

Since the function h(y) = yc2(y) is non-differentiable, the optimality condition
reads 3x2 ∈ ∂h(y). In particular, the subdifferential at y = ak is

∂h(ak) = [a2(k−1)(2a2+a), a2k(2a2+a)]

and there is a range of values of M for which the optimal solution is y = ak.
The smallest such M is obtained when 3x2 = a2(k−1)(2a2 +a). This gives as
optimal solution y = ak and x = ak−1b, with b =

√
(2a2+a)/3, corresponding

to Mk = ak−1[a+ b] with optimal value

Opt(ΓMk
) = a3(k−1)[b3 + a3].

In order to find the equilibrium for Mk we solve the equation x2 = c2(y) with
x+ y = Mk. A routine calculation gives x = ak−1c and y = ak−1d with

c =
1

2

[√
(a+ 1)2 + 4a2 + 4(a+ 1)b− (a+ 1)

]
,

d =a+ b− c.

Note that 1 < d < a so that y ∈ (ak−1, ak), and therefore the equilibrium cost is

WEq(ΓMk
) = a3(k−1)[c3 + (a+ 1)d2 − ad].



Putting together the previous formulas we get

PoA(ΓMk
) =

c3 + (a+ 1)d2 − ad
b3 + a3

.

For a = 2 this expression evaluates to PoA(ΓMk
) ∼ 1.0059 from which the result

follows. ut

Proof (of Theorem 13). Consider a game ΓM = (G ,M, c), where G = (V,E) with
V = {s, d} and E = {e1, e2}. Take a sequence {αk} such that αk+1/αk → ∞
and assume that the costs are

c1(x) = c(x) :=

{
e for x < 1,

ex/x for x ≥ 1,

c2(y) = c̄(y) := c(αk+1) for y ∈ (αk, αk+1].

Since we are interested in asymptotic results, we are concerned only with the
case c(x) = ex/x.

In equilibrium

2αk < M ≤ αk + αk+1 =⇒ y∗ = αk, x
∗ = M − αk,

αk + αk+1 < M ≤ 2αk+1 =⇒ y∗ = M − αk+1, x
∗ = αk+1.

At M = αk + αk+1 + ε we have

WEq(ΓM ) = c(αk+1)αk+1 + (M − αk+1)c(αk+1) = Mc(αk+1).

We now turn to computing the optimum.

c̃ = min
0≤x≤M

xc(x)+(M−x)c̄(M−x) = min
j

min
αj<M−x≤αj+1

xc(x)+(M−x)c(αj+1).

The unconstrained optimization yields

ex =
eαj+1

αj+1
,

xj = αj+1 − lnαj+1,

yj = M − αj+1 + lnαj+1.

For the constrained minimizer we have

yj ≤ αj =⇒ ỹj = αj =⇒ cj = eM−αj +
αj
αj+1

eαj+1 ,

yj > αj+1 =⇒ ỹj = αj+1 =⇒ cj = eM−αj+1 + eαj+1 ,

αj < yj ≤ αj+1 =⇒ ỹj = yj =⇒ cj = eαj+1−lnαj+1 + (M − αj+1 + lnαj+1)
eαj+1

αj+1

=
eαj+1

αj+1
(1 +M − αj+1 + lnαj+1).



We consider two cases:
Case 1.

j ≤ k − 1 =⇒M > 2αj+1 =⇒ yj = M − αj+1 + lnαj+1 > αj+1 + lnαj+1 > αj+1

=⇒ cj = eM−αj+1 + eαj+1 .

cj ≤ cj−1 ⇐⇒ h(αj+1) ≤ h(αj) where h(x) := eM−x + ex (6)

h′(x) = ex − eM−x ≤ 0 ⇐⇒ x ≤ M

2

αj ≤ αj+1 ≤ αk ≤
M

2
=⇒ ok!

Case 2. Does j ≥ k + 1 imply yj ≤ αj? Notice that

yj ≤ αj ⇐⇒ M − αj+1 + lnαj+1 ≤ αj
⇐⇒ M ≤ αj + αj+1 − lnαj+1.

Notice that
M ≤ 2αk+1 ≤ 2αj .

In turn the following mutual implications hold:

2αj ≤ αj + αj+1 − lnαj+1 (7)

m
lnαj+1 ≤ αj+1 − αj

m
lnαj+1

αj+1
≤ 1− αj

αj+1
. (8)

Since

M →∞ =⇒ k →∞ =⇒ j →∞ =⇒ lnαj+1

αj+1
→ 0 and

αj
αj+1

→ 0.

we have that (8) and hence (7) hold asymptotically, therefore, for M large,

j ≥ k + 1 =⇒ cj = eM−αj +
αj
αj+1

eαj+1 .

Does j ≥ k + 1 imply cj ≤ cj+1? Notice that

cj ≤ cj+1 ⇐⇒ eM−αj +
αj
αj+1

eαj+1 ≤ eM−αj+1 +
αj+1

αj+2
eαj+2 .

For x ≥ 1 the function x 7→ h(x) defined as in (6) is increasing (h′(x) =
x−2(exx− ex) ≥ 0 for x ≥ 1). Therefore

eM−αj + αj
eαj+1

αj+1
≤ eM−αj+1 + αj+1

eαj+2

αj+2
.



We now prove that the function

g(x) := eM−x + x
eαj+2

αj+2

is increasing for x ≥ αk+1. Indeed

g′(x) =
eαj+2

αj+2
− eM−x

and

g′(x) ≥ 0 ⇐⇒ M − x ≤ αj+2 − lnαj+2

⇐⇒ M ≤ x+ αj+2 − lnαj+2,

which is true for x ≥ αk+1 iff M ≤ αk+1 + αj+2 − lnαj+2. Since M ≤ 2αk+1,
it is enough to prove that αk+1 ≤ αj+2 − lnαj+2, and since x 7→ x − lnx is
increasing for x ≥ 1, it suffices to prove that αk+1 ≤ αk+2 − lnαk+2, that is,

αk+1

αk+2
≤ 1− lnαk+2

αk+2
. (9)

Since
αk+1

αk+2
→ 0 and

lnαk+2

αk+2
→ 0, as k →∞,

the inequality (9) holds for k large enough. More explicitly, since

lnαk+2

αk+2
≤ max

lnx

x
=

1

e
,

it is enough to have
αk+1

αk+2
≤ 1− 1

e
.

As a consequence,

c̃ = min{ck−1, ck, ck+1},
ck−1 = eM−αk + eαk ,

ck+1 = eM−αk+1 + αk+1
eαk+2

αk+2
,

ck depends on where yk lies w.r.t. the interval (αk, αk+1].

If we call

H(x) := eM−x + x
eαk+2

αk+2
,

we have

yk > αk+1 =⇒ ck = eM−αk+1 + eαk+1 = eM−αk+1 + αk+1
eαk+1

αk+1
≤ H(αk+1) = ck+1,

yk ≤ αk =⇒ ck = eM−αk +
αk
αk+1

eαk+1 .



Claim 21. If yk ≤ αk, then ck ≤ ck+1 for k large enough.

Proof.

eM−αk + αk
eαk+1

αk+1
≤ eM−αk + αk

eαk+2

αk+2
= H(αk).

H(x) ≥ 0 ⇐⇒ eαk+2

αk+2
≥ eM−x ⇐⇒ αk+2 − lnαk+2 + x ≥M.

For x = αk we have, for k large enough,

αk+2 − lnαk+2 + ak ≥ 2αk+1 ≥M,

since, dividing by αk+2,

1− lnαk+2

αk+2

↓
0

+
ak
ak+2

↓
0

≥ 2
ak+1

ak+2

↓
0

.

αk < yk ≤ αk+1 =⇒ ck =
eαk+1

αk+1
(1 +M − αk+1 + lnαk+1).

We need to prove that

ck ≤ ck+1 = eM−αk+1 + αk+1
eαk+2

αk+2
.

Since M ≤ 2αk+1, we have

ck ≤
eαk+1

αk+1
(1 + αk+1 + lnαk+1).

Now

yk > αk =⇒M−αk+1+lnαk+1 > αk =⇒ eM−αk+1 >
eαk

αk+1
=⇒ ck+1 ≥

eαk

αk+1
+αk+1

eαk+2

αk+2
.

If we prove that

eαk+1

αk+1
(1 +M − αk+1 + lnαk+1) ≤ eM−αk+1 + αk+1

eαk+2

αk+2
,

then we have the result. Notice that

1

αk+1
(1 + αk+1 + lnαk+1 − eαk−αk+1)︸ ︷︷ ︸

↓
1

≤ αk+1

αk+2
eαk+2−αk+1︸ ︷︷ ︸
θk

.



Now

ln θk = (αk+2 − lnαk+2)− (αk+1 − lnαk+1)

= αk+2

(
1− lnαk+2

αk+2

)
− αk+1

(
1− lnαk+1

αk+1

)
=

(
αk+2

αk+1︸ ︷︷ ︸
↓
∞

(
1− lnαk+2

αk+2︸ ︷︷ ︸
↓
0

)
−
(

1− lnαk+1

αk+1︸ ︷︷ ︸
↓
0

))
αk+1 ≥ αk+1 →∞.

Therefore θk →∞ and, asymptotically, for M large, ck ≤ ck+1. Since this holds
for all three cases of yk, we have that c̃ = min{ck, ck−1}.

When yk > αk+1, c̃ = ck if

ck = eM−αk+1 + eαk+1 ≤ ck+1 = eM−αk + eαk ,

that is,
eαk+1 [1 + eM−2αk+1 ] ≤ eαk [1 + eM−2αk ]. (10)

Given that eM−2αk+1 ≤ 1, the inequality in (10) is implied by

2eαk+1 ≤ eαk [1 + eM−2αk ]. (11)

Since yk > αk+1, we have

M ≥ 2αk+1 − lnαk+1 =⇒ eM−2αk ≥ e2(αk+1−αk)

αk+1
.

For this to hold, it suffices to have

2e2(αk+1−αk) ≤ 1 +
e2(αk+1−αk)

αk+1
.

We actually prove the stronger inequality

2e2(αk+1−αk) ≤ e2(αk+1−αk)

αk+1
,

that is
2αk+1 ≤ eαk+1−αk ,

or
ln 2 + lnαk+1 ≤ αk+1 − αk,

which holds, since
ln 2

αk+1

↓
0

+
lnαk+1

αk+1

↓
0

≤ αk+1

αk+1

↓
1

− αk
αk+1

↓
0

.



When yk ≤ αk, c̃ = ck−1 since

ck = eM−αk +
αk
αk+1

eαk+1 ≥ eM−αk +
αk
αk

eαk = ck−1.

When αk < yk ≤ αk+1, we have

ck =
eαk+1

αk+1
[1 +M − αk+1 lnαk+1]

ck+1 = eM−αk + eαk = e−αk [eM + e2αk ].

So ck ≤ ck+1 if

M
eαk+1

αk+1
− eM

eαk
≤ eαk + eαk+1

(
1− 1

αk+1
− lnαk+1

αk+1

)
M

eαk+αk+1

αk+1
− eM ≤ e2αk + eαk+αk+1

(
1− 1

αk+1
− lnαk+1

αk+1

)
.

For M slightly larger than αk + αk+1 the inequality becomes approximately

αk + αk+1

αk+1
eαk+αk+1 − eαk+αk+1 ≤ e2αk + eαk+αk+1

(
1− 1

αk+1
− lnαk+1

αk+1

)
αk
αk+1

↓
0

≤ eαk−αk+1

↓
0

+

(
1− 1

αk+1

↓
0

− lnαk+1

αk+1

↓
0

)

Therefore for M in a right neighborhood of αk + αk+1 we have c̃ = ck.
We can now compute the price of anarchy.

PoA(ΓM ) =
(αk + αk+1) eαk+1

αk+1

eαk+1

αk+1
(1 + αk + αk+1 − αk+1 + lnαk+1)

=
αk + αk+1

1 + αk + lnαk+1

=
αk+1(1 + αk

αk+1
)

1 + αk + lnαk+1

=
1 + αk

αk+1

1
αk+1

+ αk
αk+1

+ lnαk+1

αk+1

→∞

For M in a right neighborhood of αk + αk+1. Therefore

lim sup
M→∞

PoA(ΓM ) = +∞. ut
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Fig. 6. Affinely bounded costs.
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