Skip to main content

The Existence of Two Variant Processes in Human Declarative Memory: Evidence Using Machine Learning Classification Techniques in Retrieval Tasks

  • Chapter
  • First Online:
Transactions on Computational Collective Intelligence XXIV

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 9770))

Abstract

This work use supervised machine learning methods on fMRI brain scans, taken/measured during a memory-retrieval task, to support establishing the existence of two distinct systems for human declarative memory (“Explicit Encoding” (EE) and “Fast Mapping” (FM)). The importance of using retrieval is that it allows a direct comparison between exemplars designed to use EE and those designed to use FM. This is not directly available under acquisition tasks because of the nature of the purported memory systems since the tasks are necessarily somewhat distinct between the two systems under acquisition. This means that there could be a confounding of the distinction in the task with the difference in the representation and mechanism of the internal memory system during analysis. Retrieval tasks, on the other hand allow for identity of task. Thus this work fills a lacuna in earlier work which used memory acquisition tasks. In addition, since the data used in this work was gathered over a two day period, the classification methods is also able to identify a distinction in the consolidation of the memories in the two systems. The results presented here clearly support the existence of the two distinct memory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Squire, L.R.: Declarative and non-declarative memory: multiple brain systems supporting learning and memory. J. Cogn. Neurosci. 4(3), 232–243 (1992)

    Article  Google Scholar 

  2. McClelland, L., McNaughton, B.L., O’Reilly, R.C.: Why there are complementary learning system in the hippocampus and neo-cortex: insights from the successes and failure of connectionist models of learning and memory. Psychol. Rev. 102(3), 419–457 (1995)

    Article  Google Scholar 

  3. Squire, L.R., Alvarez, P.: Retrograde amnesia and memory consolidation: a neurobiological perspective. Current Opin. Neurobiol. 5(2), 169–177 (1995)

    Article  Google Scholar 

  4. Frankland, P.W., Bontempi, B.: The organization of recent and remote memories. Nature Rev. Neurosci. 6, 119–130 (2005)

    Article  Google Scholar 

  5. Gais, S., Albouy, G., Boly, M., Dang-Vu, T.T., Darsaud, A., Desseilles, M., Rauchs, G., Schabus, M., Sterpenich, V., Vandewalle, G., Maquet, P., Peigneux, P.: Sleep transforms the cerebral trace of declarative memories. Proc. Nat. Acad. Sci. USA 104(47), 18778–18783 (2007)

    Article  Google Scholar 

  6. Bauer, P.J.: Toward a neuro-developmental account of the development of declarative memory. Dev. Psychobiol. 50(1), 19–31 (2008)

    Article  Google Scholar 

  7. Uematsu, A., Matsui, M., Tanaka, C., Takahashi, T., Noguchi, K., Suzuki, M., Nishijo, H.: Developmental trajectories of amygdale and hippocampus from infancy to early adulthood in healthy individuals. PLoS ONE 7(10), e46970 (2012)

    Article  Google Scholar 

  8. Sharon, T., Moscovitch, M., Gilboa, A.: Rapid neocortical acquisition of long-tem arbitrary associations independent of the hippocampus. Proc. Nat. Acad. Sci. USA 108(3), 1146–1151 (2011)

    Article  Google Scholar 

  9. Merhav, M., Karni, A., Gilboa, A.: Neocortical catastrophic interference in healthy and amnesic adults: A paradoxical matter of time. Hippocampus 24(12), 1653–1662 (2014)

    Article  Google Scholar 

  10. Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10(9), 424–430 (2006)

    Article  Google Scholar 

  11. Mitchell, T., Shinkareva, S., Carlson, A., Chang, K.M., Malave, V.L., Mason, R., Just, M.A.: Predicting human brain activity associated with the meanings of nouns. Science 320(5880), 1191–1195 (2008)

    Article  Google Scholar 

  12. Kriegeskorte, N., Goebel, R., Bandettini, P.: Information-based functional brain mapping. Proc. Nat. Acad. Sci. USA 103(10), 3863–3868 (2006)

    Article  Google Scholar 

  13. Nawa, N.E., Ando, H.: Classification of self-driven mental tasks from whole-brain activity patterns. PLoS ONE 9(5), e97296 (2014)

    Article  Google Scholar 

  14. Atir-Sharon, T., Gilboa, A., Hazan, H., Koilis, E., Manevitz, L.M.: Decoding the formation of new semantics: MVPA investigation of rapid neocortical plasticity during associative encoding through Fast Mapping. Neural Plast. 2015, 17 (2015)

    Google Scholar 

  15. Gilboa, A., Hazan, H., Koilis, E., Manevitz, L., Sharon, T.: Two memory systems: identifying human memory encoding mechanisms from psychological fMRI data via machine learning techniques. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), p. 54 (2011)

    Google Scholar 

  16. Merhav, M., Karni, A., Gilboa, A.: Not all declarative memories are created equal: fast mapping as a direct route to cortical declarative representations. Neuroimage 117, 80–92 (2015)

    Article  Google Scholar 

  17. Wiesen, J.P.: Benefits, Drawbacks, and Pitfalls of z-Score Weighting. In: 30th Annual IPMAAC Conference (2006). http://annex.ipacweb.org/library/conf/06/wiesen.pdf, 27 Jun 2006

  18. Sladky, R., Friston, K.J., Tröstl, J., Cunnington, R., Moser, E., Windischberger, C.: Slice-timing effects and their correction in functional MRI. Neuroimage 58(2), 588–594 (2011)

    Article  Google Scholar 

  19. Gonzalez-Castillo, J., Saad, Z.S., Handwerker, D.A., Inati, S.J., Brenowitz, N., Bandettini, P.A.: Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis. Proc. Nat. Acad. Sci. 109(14), 5487–5492 (2012)

    Article  Google Scholar 

  20. Vapnik, V.: Statistical learning theory. Wiley, New York (1998)

    MATH  Google Scholar 

  21. Vert, J.P., Tsuda, K., Schölkopf, B.: A primer on kernel methods. Kernel Methods in Computational Biology (2004)

    Google Scholar 

  22. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm

  23. Hanke, M., Sederberg, P.B., Hanson, S.J., Haxby, J.V., Pollmann, S.: PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics 7(1), 37–53 (2009)

    Article  Google Scholar 

  24. Hu, S., Liang, H.: Causality analysis of neural connectivity: New tool and limitations of spectral granger causality. Neurocomputing 76(1), 44–47 (2012)

    Article  Google Scholar 

  25. Cox, C.: AFNI: software for analysis and visualization of functional magnetic resonance images. Comput. Biomed. Res. 29, 126–173 (1996)

    Article  Google Scholar 

  26. Talairach, J., Tournoux, P.: Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging (1988)

    Google Scholar 

  27. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. CRC Press, Boca Raton (1984)

    MATH  Google Scholar 

  28. Gelfand, S.B., Ravishankar, C.S., Delp, E.J.: An iterative growing and pruning algorithm for classification tree design. IEEE Trans. Pattern Anal. Mach. Intell. 13(2), 163–174 (1991)

    Article  Google Scholar 

Download references

Acknowlegments

Part of this work appears in the M.Sc thesis of Ms. Gal Star at University of Haifa under the supervision of Prof. Larry Manevitz at the Neuro-Computation Laboratory at Caesarea Rothschild Institute (CRI), Haifa, Israel.

The research is based on data gathered by Rotman Research Institute at Baycrest, Toronto, Canada. The examining of this data was suggested by Dr. A. Gilboa and complements the work of Merhav, Karni and Gilboa [16]. The computational analysis of the data was performed at the Neuro-Computation Laboratory at the Caesarea Rothschild Institute at the University of Haifa, Israel under the supervision of Prof. Larry Manevitz. The authors are listed in alphabetical order.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Frid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frid, A., Hazan, H., Koilis, E., Manevitz, L.M., Merhav, M., Star, G. (2016). The Existence of Two Variant Processes in Human Declarative Memory: Evidence Using Machine Learning Classification Techniques in Retrieval Tasks. In: Nguyen, N., Kowalczyk, R., Filipe, J. (eds) Transactions on Computational Collective Intelligence XXIV. Lecture Notes in Computer Science(), vol 9770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53525-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53525-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53524-0

  • Online ISBN: 978-3-662-53525-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics