Abstract
We study several parameters of geodetic convexity for graph classes defined by restrictions concerning short induced paths. Partially answering a question posed by Araujo et al., we show that computing the geodetic hull number of a given \(P_9\)-free graph is NP-hard. Similarly, we show that computing the geodetic interval number of a given \(P_5\)-free graph is NP-hard. On the positive side, we identify several graph classes for which the geodetic hull number can be computed efficiently. Furthermore, following a suggestion of Campos et al., we show that the geodetic interval number, the geodetic convexity number, the geodetic Carathéodory number, and the geodetic Radon number can all be computed in polynomial time for \((q,q-4)\)-graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albenque, M., Knauer, K.: Convexity in partial cubes: the hull number. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 421–432. Springer, Heidelberg (2014)
Araujo, J., Campos, V., Giroire, F., Nisse, N., Sampaio, L., Soares, R.: On the hull number of some graph classes. Theoret. Comput. Sci. 475, 1–12 (2013)
Araujo, J., Morel, G., Sampaio, L., Soares, R., Weber, V.: Hull number: \(P_5\)-free graphs and reduction rules. Discrete Appl. Math. 210, 171–175 (2016)
Araujo, J., Sampaio, R., Santos, V., Szwarcfiter, J.L.: The convexity of induced paths of order three, applications: complexity aspects, manuscript
Babel, L., Olariu, S.: On the structure of graphs with few \(P_4\)’s. Discrete Appl. Math. 84, 1–13 (1998)
Carathéodory, C.: Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rendiconti del Circolo Matematico di Palermo 32, 193–217 (1911)
Campos, V., Sampaio, R.M., Silva, A., Szwarcfiter, J.L.: Graphs with few \(P_4\)’s under the convexity of paths of order three. Discrete Appl. Math. 192, 28–39 (2015)
Changat, M., Klavžar, S., Mulder, H.M.: The all-paths transit function of a graph. Czechoslovak Math. J. 51, 439–448 (2001)
Changat, M., Mathew, J.: On triangle path convexity in graphs. Discrete Math. 206, 91–95 (1999)
Changat, M., Prasanth, G.N., Mathews, J.: Triangle path transit functions, betweenness and pseudo-modular graphs. Discrete Math. 309, 1575–1583 (2009)
Chartrand, G., Wall, C.E., Zhang, P.: The convexity number of a graph. Graphs Comb. 18, 209–217 (2002)
Dourado, M.C., Gimbel, J.G., Kratochvíl, J., Protti, F., Szwarcfiter, J.L.: On the computation of the hull number of a graph. Discrete Math. 309, 5668–5674 (2009)
Dourado, M.C., Pereira de Sá, V.G., Rautenbach, D., Szwarcfiter, J.L.: On the geodetic Radon number of grids. Discrete Math. 313, 111–121 (2013)
Dourado, M.C., de Sá, V.G.P., Rautenbach, D., Szwarcfiter, J.L.: Near-linear-time algorithm for the geodetic Radon number of grids. Discrete Appl. Math. 210, 277–283 (2016)
Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: On the hull number of triangle-free graphs. SIAM J. Discrete Math. 23, 2163–2172 (2010)
Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: Some remarks on the geodetic number of a graph. Discrete Math. 310, 832–837 (2010)
Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: On the convexity number of graphs. Graphs Comb. 28, 333–345 (2012)
Dourado, M.C., Protti, F., Szwarcfiter, J.L.: Complexity results related to monophonic convexity. Discrete Appl. Math. 158, 1269–1274 (2010)
Dourado, M.C., Rautenbach, D., dos Santos, V., Schäfer, P.M., Szwarcfiter, J.L.: On the Carathéodory number of interval and graph convexities. Theoret. Comput. Sci. 510, 127–135 (2013)
Dragan, F., Nicolai, F., Brandstädt, A.: Convexity and HHD-free graphs. SIAM J. Discrete Math. 12, 119–135 (1999)
Duchet, P.: Convex sets in graphs II: minimal path convexity. J. Comb. Theory Ser. B 44, 307–316 (1988)
Ekim, T., Erey, A.: Block decomposition approach to compute a minimum geodetic set. RAIRO Recherche Opérationnelle 48, 497–507 (2014)
Ekim, T., Erey, A., Heggernes, P., van ’t Hof, P., Meister, D.: Computing minimum geodetic sets of proper interval graphs. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 279–290. Springer, Heidelberg (2012)
Everett, M.G., Seidman, S.B.: The hull number of a graph. Discrete Math. 57, 217–223 (1985)
Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Algebraic Discrete Methods 7, 433–444 (1986)
Garey, M.R., Johnson, D.S., Computers, I.: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York (1979)
Gimbel, J.: Some remarks on the convexity number of a graph. Graphs Comb. 19, 357–361 (2003)
Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math. Comput. Model. 17, 89–95 (1993)
Kanté, M.M., Nourine, L.: Polynomial time algorithms for computing a minimum hull set in distance-hereditary and chordal graphs. In: Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 268–279. Springer, Heidelberg (2013)
Radon, J.: Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Math. Ann. 83, 113–115 (1921)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag GmbH Germany
About this paper
Cite this paper
Dourado, M.C., Penso, L.D., Rautenbach, D. (2016). Geodetic Convexity Parameters for Graphs with Few Short Induced Paths. In: Heggernes, P. (eds) Graph-Theoretic Concepts in Computer Science. WG 2016. Lecture Notes in Computer Science(), vol 9941. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53536-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-662-53536-3_3
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-53535-6
Online ISBN: 978-3-662-53536-3
eBook Packages: Computer ScienceComputer Science (R0)