Skip to main content

Complex Contagions on Configuration Model Graphs with a Power-Law Degree Distribution

  • Conference paper
  • First Online:
Web and Internet Economics (WINE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10123))

Included in the following conference series:

Abstract

In this paper we analyze k-complex contagions (sometimes called bootstrap percolation) on configuration model graphs with a power-law distribution. Our main result is that if the power-law exponent \(\alpha \in (2, 3)\), then with high probability, the single seed of the highest degree node will infect a constant fraction of the graph within time \(O\left( \log ^{\frac{\alpha -2}{3-\alpha }}(n)\right) \). This complements the prior work which shows that for \(\alpha > 3\) boot strap percolation does not spread to a constant fraction of the graph unless a constant fraction of nodes are initially infected. This also establishes a threshold at \(\alpha = 3\).

The case where \(\alpha \in (2, 3)\) is especially interesting because it captures the exponent parameters often observed in social networks (with approximate power-law degree distribution). Thus, such networks will spread complex contagions even lacking any other structures.

We additionally show that our theorem implies that \(\omega (\left( n^{\frac{\alpha -2}{\alpha -1}}\right) \) random seeds will infect a constant fraction of the graph within time \(O\left( \log ^{\frac{\alpha -2}{3-\alpha }}(n)\right) \) with high probability. This complements prior work which shows that \(o\left( n^{\frac{\alpha -2}{\alpha -1}}\right) \) random seeds will have no effect with high probability, and this also establishes a threshold at \(n^{\frac{\alpha -2}{\alpha -1}}\).

G. Schoenebeck—Supported by National Science Foundation Career Award #1452915

F.-Y. Yu—Supported by National Science Foundation Algorithms in the Field Award #1535912.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamic, L.A., Glance, N.: The political blogosphere, the: divided they blog. In: Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43. ACM (2005)

    Google Scholar 

  2. Adler, J.: Bootstrap percolation. Phys. A: Stat. Theor. Phys. 171(3), 453–470 (1991)

    Article  Google Scholar 

  3. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002). doi:10.1103/RevModPhys.74.47. http://link.aps.org/doi/10.1103/RevModPhys.74.47

    Article  MathSciNet  MATH  Google Scholar 

  4. Amini, H.: Bootstrap percolation and diffusion in random graphs with given vertex degrees. Electron. J. Comb. 17(1), 1–20 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Amini, H., Fountoulakis, N.: What I tell you three times is true: bootstrap percolation in small worlds. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 462–474. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35311-6_34

    Chapter  Google Scholar 

  6. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 44–54 (2006)

    Google Scholar 

  7. Balogh, J., Pittel, B.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms 30, 257–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: The diffusion of microfinance. Science 341(6144), 1236498 (2013)

    Article  Google Scholar 

  9. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bollobás, B., McKay, B.D.: The number of matchings in random regular graphs and bipartite graphs. J. Comb. Theory, Series B 41(1), 80–91 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. In: Proceedings of the 9th International World Wide Web Conference on Computer Networks, pp. 309–320 (2000)

    Google Scholar 

  12. Centola, D., Macy, M.: Complex contagions and the weakness of long ties1. Am. J. Sociol. 113(3), 702–734 (2007)

    Article  Google Scholar 

  13. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a bethe lattice. J. Phys. C: Solid State Phys. 12(1), L31 (1979)

    Article  Google Scholar 

  14. Coleman, J., Katz, E., Menzel, H.: The diffusion of an innovation among physicians. Sociometry 20(4), 253–270 (1957)

    Article  Google Scholar 

  15. Coleman, J.S., Katz, E., Menzel, H.: Medical Innovation: A Diffusion Study. Bobbs-Merrill Co., Indianapolis (1966)

    Google Scholar 

  16. Ebrahimi, R., Gao, J., Ghasemiesfeh, G., Schoenebeck, G.: How complex contagions spread quickly in the preferential attachment model, other time-evolving networks. arXiv preprint arXiv:1404.2668 (2014)

  17. Ebrahimi, R., Gao, J., Ghasemiesfeh, G., Schoenebeck, G.: Complex contagions in Kleinberg’s small world model. In: Proceedings of the Conference on Innovations in Theoretical Computer Science, pp. 63–72. ACM (2015)

    Google Scholar 

  18. Ghasemiesfeh, G., Ebrahimi, R., Gao, J.: Complex contagion, the weakness of long ties in social networks: revisited. In: Proceedings of the Fourteenth ACM Conference on Electronic Commerce, pp. 507–524, June 2013

    Google Scholar 

  19. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  20. Janson, S., Łuczak, T., Turova, T., Vallier, T.: Bootstrap percolation on the random graph \(G_{n, p}\). Ann. Appl. Prob. 22(5), 1989–2047 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

    Google Scholar 

  22. Macdonald, J.S., Macdonald, L.D.: Chain migration, ethnic neighborhood formation and social networks. Milbank Meml. Fund Q. 42(1), 82–97 (1964)

    Article  Google Scholar 

  23. Mermelstein, R., Cohen, S., Lichtenstein, E., Baer, J.S., Kamarck, T.: Social support and smoking cessation and maintenance. J. Consult. Clin. Psychol. 54(4), 447 (1986)

    Article  Google Scholar 

  24. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. De Solla Price, D.: Networks of scientific papers. Science 149(3683), 510–515 (1965). doi:10.1126/science.149.3683.510

    Article  Google Scholar 

  26. Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 695–704 (2011)

    Google Scholar 

  27. Steyvers, M., Tenenbaum, J.B.: The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Cogn. Sci. 29, 41–78 (2005)

    Article  Google Scholar 

  28. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. Proc. Natl. Acad. Sci. 109(16), 5962–5966 (2012)

    Article  Google Scholar 

  29. Van Der Hofstad, R.: Random graphs and complex networks, p. 11 (2009). http://www.win.tue.nl/rhofstad/NotesRGCN.pdf

  30. Wormald, N.C.: Differential equations for random processes and random graphs. Ann. Appl. Prob. 5(4), 1217–1235 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Yi Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Schoenebeck, G., Yu, FY. (2016). Complex Contagions on Configuration Model Graphs with a Power-Law Degree Distribution. In: Cai, Y., Vetta, A. (eds) Web and Internet Economics. WINE 2016. Lecture Notes in Computer Science(), vol 10123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54110-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54110-4_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54109-8

  • Online ISBN: 978-3-662-54110-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics