Skip to main content

Medical Image Denoising Using Metaheuristics

  • Chapter
  • First Online:
Metaheuristics for Medicine and Biology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 704))

Abstract

In recent years, metaheuristic optimization techniques have attracted much attention from researchers and practitioners and they have been widely used to solve complex or specific optimization problems in all fields, from engineering area to finance [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.S. Bhadauria, Medical image denoising using adaptive fusion of curvelet transform and total variation. Comput. Electr. Eng. 39, 1451–1460 (2013)

    Article  Google Scholar 

  2. I. Boussaad, J. Lepagnot, P. Siarry, A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Das, A. Konar, A swarm intelligence approach to the synthesis of two-dimensional IIR filters. Eng. Appl. Artif. Intell. 20, 1086–1109 (2007)

    Article  Google Scholar 

  4. D.L. Donoho, Denoising by soft thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995)

    Article  MATH  Google Scholar 

  5. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Studies in Computational Intelligence (Addison-Wesley Longman Publishing Co., Boston, 1989)

    MATH  Google Scholar 

  6. P. Gravel, G. Beaudoin, J.A. De Guise, A method for modeling noise in medical images. IEEE Trans. Med. Imaging 23(10), 1221–1232 (2004)

    Article  Google Scholar 

  7. J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, 1975)

    Google Scholar 

  8. D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  9. N. Karaboga, A new design method based on artificial bee colony algorithm for digital IIR filters. J. Franklin Inst. 346, 328–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2012)

    Article  Google Scholar 

  11. N. Karaboga, S. Kockanat, H. Dogan, The parameter extraction of the thermally annealed schottky barrier diode using the modified artificial bee colony. Appl. Intell. 38(3), 279–288 (2013)

    Article  Google Scholar 

  12. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Karaboga, F. Latifoglu, Elimination of noise on transcranial Doppler signal using IIR filters designed with artificial bee colony - ABC-algorithm. Digit. Sig. Proc. 23(3), 1051–1058 (2013)

    Article  MathSciNet  Google Scholar 

  14. N. Karaboga, F. Latifoglu, Adaptive filtering noisy transcranial Doppler signal by using artificial bee colony algorithm. Eng. Appl. Artif. Intell. 26(2), 677–684 (2013)

    Article  Google Scholar 

  15. J. Kennedy, R. Eberhart, Particle swarm optimization, in IEEE International Conference on Neural Networks (1995), pp. 1942–1948

    Google Scholar 

  16. S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Kockanat, N. Karaboga, Parameter tuning of artificial bee colony algorithm for Gaussian noise elimination on digital images, In 2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications (2013), pp. 1–4

    Google Scholar 

  18. S. Kockanat, N. Karaboga, T. Koza, Image denoising with 2-D FIR filter by using artificial bee colony algorithm, In 2012 International Symposium on Innovations in Intelligent Systems and Applications (2012), pp. 1–4

    Google Scholar 

  19. F. Latifoglu, A novel approach to speckle noise filtering based on artificial bee colony algorithm: an ultrasound image application. Comput. Methods Programs Biomed. 111, 561–569 (2013)

    Article  Google Scholar 

  20. J.S. Lee, Digital image enhancement and noise filtering by using local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2(2), 165–168 (1980)

    Article  Google Scholar 

  21. T. Loupas, W. Mc Dicken, An adaptive weighted median filter for speckle suppression in medical ultrasound images. IEEE Trans. Circuits Syst. 36(1), 129–135 (1989)

    Article  Google Scholar 

  22. W.S. Lu, A. Antoniou, Two-Dimensional Digital Filters (Marcel Dekker, New York, 1992)

    MATH  Google Scholar 

  23. N.E. Mastorakis, F. Gonos, Design of two-dimensional recursive filters using genetic algorithms. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 50(5), 634–639 (2003)

    Article  Google Scholar 

  24. P. Perona, J. Malik, Scale-space and edge eetection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  25. H. Rabbani, R. Nezafat, S. Gazor, Wavelet-domain medical image denoising using bivariate laplacian mixture model. IEEE Trans. Biomed. Eng. 56(12), 2826–2837 (2009)

    Article  Google Scholar 

  26. R. Storn, K. Price, Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. S.T. Tzeng, Design of 2-D fir digital filters with specified magnitude and group delay responses by GA approach. Sig. Proc. 87(9), 2036–2044 (2007)

    Article  MATH  Google Scholar 

  28. L. Yin, R. Yang, M. Gabbouj, Y. Neuvo, Weighted median filters: a tutorial. IEEE Trans. Circuits Syst. II, Analog Digit. Sig. Proc. 43(3), 157–192 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the reviewers for their constructive suggestions which significantly helped in improving the quality of this paper. This work was supported by Research Fund of Erciyes University. Project Number: FDK-2012-4156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurhan Karaboga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Kockanat, S., Karaboga, N. (2017). Medical Image Denoising Using Metaheuristics. In: Nakib, A., Talbi, EG. (eds) Metaheuristics for Medicine and Biology. Studies in Computational Intelligence, vol 704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54428-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54428-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54426-6

  • Online ISBN: 978-3-662-54428-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics