
Proving Termination through Conditional
Termination?

Cristina Borralleras1, Marc Brockschmidt2, Daniel Larraz3, Albert Oliveras3,
Enric Rodŕıguez-Carbonell3, and Albert Rubio3

1 Universitat de Vic - Universitat Central de Catalunya
2 Microsoft Research, Cambridge

3 Universitat Politècnica de Catalunya

Abstract. We present a constraint-based method for proving conditional
termination of integer programs. Building on this, we construct a frame-
work to prove (unconditional) program termination using a powerful
mechanism to combine conditional termination proofs. Our key insight
is that a conditional termination proof shows termination for a subset
of program execution states which do not need to be considered in the
remaining analysis. This facilitates more effective termination as well
as non-termination analyses, and allows handling loops with different
execution phases naturally. Moreover, our method can deal with sequences
of loops compositionally. In an empirical evaluation, we show that our
implementation VeryMax outperforms state-of-the-art tools on a range of
standard benchmarks.

1 Introduction

Proving program termination requires not only synthesizing termination argu-
ments, but also reasoning about reachability of program states, as most non-trivial
programs contain subprocedures or loops that only terminate for the executions
that actually reach them. Thus, a termination prover has to segment the program
state space according to its termination behavior, ignoring non-terminating but
unreachable states. Recent advances in termination proving try to tackle this prob-
lem by abducing conditions for non-termination, and focusing the termination
proof search on the remaining state space [25,32]. However, these techniques rely
on relatively weak non-termination proving techniques. Furthermore, different
termination arguments may be required depending on how a loop or subprocedure
is reached, and thus, even though no non-termination argument can be found,
the state space needs to be segmented.

In this work, we propose to use preconditions for termination to drive the
unconditional termination proof. The key insight is that a condition φ implying

? This work was partially supported by the project TIN2015-69175-C4-3-R (MINECO/
FEDER) and by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement ERC-2014-CoG
648276 AUTAR).

Borralleras, C. [et al.]. Proving termination through conditional termination. A: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. "Tools and Algorithms for the Construction and Analysis of
Systems, 23rd International Conference, TACAS 2017: held as part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017: Uppsala, Sweden, April 22-29, 2017: proceedings, part I". Berlín: Springer, 2017, p. 99-117.
The final authenticated version is available online at https://doi.org/10.1007/978-3-662-54577-5_6

2 C. Borralleras et al.

termination allows a termination prover to focus on those program states in
which ¬φ holds. To obtain preconditions for termination, we introduce a new
constraint-based method that analyzes program components (i.e., loops or sub-
procedures) independently and synthesizes termination arguments together with
a conditional supporting invariant [12]. To prove full program termination, we use
a novel program transformation we call unfolding which syntactically splits termi-
nating from potentially non-terminating states using the generated termination
conditions. This allows us to combine several conditional termination arguments,
each obtained for a small component of the program independently, into a proof
for the input program. In summary, we present the following contributions:

– A new method based on Max-SMT for finding preconditions for termination
(cf. Sect. 3 and Algo. 1).

– A framework to prove termination or non-termination by repeatedly sim-
plifying the program analysis task by combining conditional termination
arguments using the unfolding transformation (cf. Sect. 4 and Algo. 2).

– An implementation of the technique in our tool VeryMax for C++ input
programs and an extensive experimental evaluation showing that it is not
only more powerful than existing tools, but also more efficient (cf. Sect. 5).

2 Preliminaries

SAT, Max-SAT, and Max-SMT. Let P be a fixed set of propositional variables. For
p ∈ P , p and ¬p are literals. A clause is a disjunction of literals l1∨· · ·∨ln. A (CNF)
propositional formula is a conjunction of clauses C1 ∧ · · · ∧ Cm. The problem of
propositional satisfiability (SAT) is to determine whether a propositional formula
F has a model, i.e., an assignment M that satisfies F , denoted by M |= F . An
extension of SAT is Satisfiability Modulo Theories (SMT) [6], where one checks the
satisfiability of a formula with literals from a given background theory. Another
extension is (weighted partial) Max-SAT [6], where some clauses in the input
formula are soft clauses with an assigned weight, and the others are hard clauses.
Here, we look for a model of the hard clauses that maximizes the sum of the weights
of the satisfied soft clauses. Finally, Max-SMT combines Max-SAT and SMT. In a
Max-SMT problem a formula is of the form H1∧ . . .∧Hn∧ [S1, ω1]∧ . . .∧ [Sm, ωm],
where the hard clauses Hi and the soft clauses Sj (with weight ωj) are disjunctions
of literals over a background theory, and the aim is to find a model of the hard
clauses that maximizes the sum of the weights of the satisfied soft clauses.

Programs and States. We fix a set of integer program variables V = {v1, . . . , vn}
and denote by F (V) the conjunctions of linear inequalities over the variables V.

Let L be the set of program locations, which contains a canonical initial
location `init. Program transitions are tuples (`s, ρ, `t), where `s and `t ∈ L are
the source and target locations respectively, and ρ ∈ F (V ∪V ′) describes the
transition relation. Here V ′ = {v′1, . . . , v′n} represent the values of the program
variables after the transition.4

4 For ϕ ∈ F (V), we denote by ϕ′∈F (V ′) the version of ϕ using primed variables.

Proving Termination through Conditional Termination 3

A program P is a set of transitions.5 The set of locations in these transitions
is denoted by L(P). We identify a program with its control-flow graph (CFG), a
directed graph in which nodes are the locations and edges are the transitions.6

A program component C of a program P is the set of transitions of a strongly
connected component (SCC) of the CFG of P. Its entry transitions EC are those
transitions τ = (`s, ρ, `t) such that τ 6∈ C but `t ∈ L(C) (and in this case `t is
called an entry location), while its exit transitions XC are such that τ 6∈ C but
`s ∈ L(C) (and then `s is an exit location).

A state s = (`, v) consists of a location ` ∈ L and a valuation v : V → Z. Initial
states are of the form (`init, v). We denote a computation step with transition
τ = (`s, ρ, `t) by (`s, v)→τ (`t, w), where (v, w) |= ρ. We use →P if we do not
care about the executed transition of P , and→∗P to denote the transitive-reflexive
closure of →P . Sequences of computation steps are called computations.

Safety and Termination. An assertion (`, ϕ) is a pair of a location ` and a formula
ϕ ∈ F (V). A program P is safe for the assertion (`, ϕ) if for every computation
starting at an initial state s0 of the form s0 →∗P (`, v), we have that v |= ϕ
holds. Safety can be proved using conditional invariants [12], which like ordinary
invariants are inductive, but not necessarily initiated in all computations.

Definition 1 (Conditional Inductive Invariant). Let P be a program. We
say a map Q : L(P)→ F (V) is a conditional (inductive) invariant for P if for
all (`s, v)→P (`t, w), we have v |= Q(`s) implies w |= Q(`t).

A program P is terminating if any computation starting at an initial state is
finite. An important tool for proving termination are ranking functions:

Definition 2 (Ranking Function). Let C be a component of a program P,
and τ = (`s, ρ, `t) ∈ C. A function R : Zn → Z is a ranking function for τ if:

– ρ |= R ≥ 0 [Boundedness]
– ρ |= R > R′ [Decrease]

and for every (ˆ̀
s, ρ̂, ˆ̀

t) ∈ C,

– ρ̂ |= R ≥ R′ [Non-increase]

The key property of ranking functions is that if a transition admits one, then
it cannot be executed infinitely.

A core concept in our approach is conditional termination, i.e., the notion that
once a condition holds, a program is definitely terminating. As we make heavy
use of the program’s control flow graph structure, we introduce this concept as
location-dependent.

5 Hence in our programming model procedure calls are not allowed. Note however that
programs with non-recursive calls can also be handled by inlining the calls.

6 Since we label transitions only with conjunctions of linear inequalities, disjunctive
conditions are represented using several transitions with the same source and target
location. Thus, P is actually a multigraph.

4 C. Borralleras et al.

int x, y, z ;
x = nondet();
y = nondet();
z = nondet();
while (y ≥ 0 && z 6= 0) {

if (z ≥ 0) {
x = x − z;
y = y + x;
z = z + 1;
} else {

y = y + z;
z = z − 1;

} }

`0 `1 `2
τ0 : true

τ1 : y ≥ 0 ∧ z > 0
∧ x′ = x− z
∧ y′ = y + x
∧ z′ = z + 1

τ2 : y ≥ 0 ∧ z < 0
∧ x′ = x
∧ y′ = y + z
∧ z′ = z − 1

τ3 : y < 0 ∧ x′ = x
∧ y′ = y ∧ z′ = z

τ4 : z = 0 ∧ x′ = x
∧ y′ = y ∧ z′ = z

Fig. 1. Program and its CFG.

Definition 3 (Conditional Termination). We say that a program P is (`, ϕ)-
conditionally terminating if every computation that contains a state (`, v) with
v |= ϕ uses transitions from P only a finite number of times. In that case the
assertion (`, ϕ) is called a precondition for termination.

3 Synthesizing Conditional Termination Arguments

Our approach for synthesizing conditional termination arguments works on one
program component at a time. As proving that a program terminates is equivalent
to showing that there is no program component where a computation can stay
indefinitely, this turns out to be a convenient way to decompose termination
proofs.

For a fixed program component C, a conditional lexicographic termination
argument is constructed iteratively by transition elimination as follows. In each
iteration, we synthesize a linear ranking function together with supporting
conditional invariants, requiring that they show that at least one transition of C
is finitely executable, i.e., can only occur a finite number of times in any execution.
The intuition here is that once we have proven that a transition τ can only
be used finitely often, we only need to consider (possibly infinite) suffixes of
program executions in which τ cannot appear anymore. If after some iterations
no transition of C can be executed infinitely anymore, then the conjunction of all
conditional invariants obtained at an entry location of C yields a precondition for
termination. Indeed, once the conditional invariants hold at that entry location,
then by inductiveness they hold from then on at all locations of C, and hence the
termination argument applies.

Example 1. Consider the program in Fig. 1 and its CFG, with initial location
`init = `0. We want to find a precondition for termination of the component
C = {τ1, τ2}, corresponding to the while loop.

Proving Termination through Conditional Termination 5

For τ = (`s, ρ, `t):

Initiation: Iτ
def
= ρ ⇒ I ′`t

Consecution: Cτ
def
= I`s ∧ ρ ⇒ I ′`t

Boundedness: Bτ
def
= I`s ∧ ρ ⇒ R ≥ 0

Decrease: Dτ
def
= I`s ∧ ρ ⇒ R > R′

Non-increase: Nτ
def
= I`s ∧ ρ ⇒ R ≥ R′

Fig. 2. Constraints used for generating preconditions for termination.

In a first iteration, we generate the ranking function y for τ2, together with the
supporting conditional invariant z < 0. Note that z < 0 is indeed a conditional
invariant: it is preserved by τ2 as z decreases its value, and is also trivially
preserved by τ1 since this transition is in fact disabled if z < 0. Under the
condition z < 0, y is bounded and decreases in τ2, and τ1 is disabled and so
finitely executable. Hence, (`1, z < 0) is a precondition for termination. �

As observed in [9, 30], synthesizing lexicographic termination arguments
together with supporting invariants requires to keep several copies of the program
under analysis. Thus, in the analysis of a component C, we keep a set M of
possibly infinitely executable transitions (i.e., those for which we have not proved
conditional termination yet), called the termination component. Nonetheless, to
compute sound invariants (i.e., soundly reason about reachable states), we need to
take all transitions into account. However, these transitions can be strengthened
with the supporting invariants that we synthesized in earlier proof steps. Hence,
we keep another copy I, called the conditional invariant component, which is like
the original component C, except for the addition of the conditional invariants
found in previous iterations. Initially both the termination and the conditional
invariant components are identical copies of the component C.

The proposed method for generating preconditions for termination is an ex-
tension of the constraint-based approach for proving (unconditional) termination
presented in [30]. The individual constraints used in our method are displayed in
Fig. 2, corresponding to the standard constraints employed in constraint-based
techniques [8]. For all locations ` in C, we introduce templates I` corresponding
to fixed-length conjunctions of linear inequalities on the program variables; i.e.,
I` is of the form

∧
1≤i≤k(ai +

∑
v∈V ai,vv ≤ 0) for some k and where the a∗ are

integer template variables that do not appear in V. Furthermore, we also define
a template R for a linear ranking function7 with integer coefficients, i.e., R is of
the form a+

∑
v∈V avv. For a given component C with entries EC, we combine

7 While using a different ranking function for each program location is possible, we
have found that the added power does not justify the increased complexity of the
ensuing SMT problem.

6 C. Borralleras et al.

these constraints in the (non-linear) formula F as follows:

F def
=

∧
τ∈EC

Iτ ∧
∧
τ∈I

Cτ ∧
∧
τ∈M

Nτ ∧
∨
τ∈M

(Bτ ∧ Dτ) .

However, not all of these constraints are treated as hard constraints. Most notably,
we turn

∧
τ∈EC Iτ into soft constraints. Intuitively this means that, if possible, we

want to synthesize a true (unconditional) supporting invariant, but will also allow
invariants that do not always hold. However, we keep

∧
τ∈I Cτ as a hard constraint,

ensuring that our conditional invariants are indeed inductive, i.e., keep on holding
after they have been satisfied once. Similarly,

∧
τ∈M Nτ ∧

∨
τ∈M(Bτ ∧ Dτ) are

kept as hard constraints, enforcing that a true ranking function is found, though
it may only hold in those cases where the supporting invariant is initiated. The
conditions for the supporting invariants will eventually become our preconditions
for termination.

Algo. 1 shows our procedure CondTerm for generating preconditions for ter-
mination. It takes as inputs the component C under consideration and its entry
transitions EC , and returns a conditional invariant Q that ensures that no infinite
computation can remain within C.

Algorithm 1 Procedure CondTerm for computing preconditions for termination

Input: component C, entry transitions EC
Output: None | Q, where Q maps locations in L(C) to conjunctions of inequalities
1: (I,M)← (C, C)
2: Q ← { ` 7→ true | ` ∈ L(C) }
3: whileM 6= ∅ do
4: construct formula F from I, M, EC
5: σ ← Max-SMT-solver(F)
6: if σ is a solution then
7: I ← { (`s, ρ ∧ σ(I`s), `t) | (`s, ρ, `t) ∈ I }
8: M← { (`s, ρ ∧ σ(I`s), `t) | (`s, ρ, `t) ∈M }
9: M←M− { τ ∈M | σ(R) is a ranking function for τ }

10: Q ← { ` 7→ Q(`) ∧ σ(I`) | ` ∈ L(C) }
11: else return None
12: return Q

In Algo. 1, we continue to extend the termination argument as long as there are
still potentially infinitely executable transitions (line 3). For this, we build a Max-
SMT problem F to generate a ranking function and its supporting conditional
invariants. If no solution can be found, then the procedure gives up (line 11).
Otherwise, a solution σ to F yields a linear function σ(R) (the instantiation of
the template ranking function R determined by σ) together with conditional
invariants σ(I`s). Since the σ(I`s) are conditional invariants, they can be used
to strengthen transitions τ = (`s, ρ, `t) by conjoining σ(I`s) to ρ, both in the
conditional invariant component and in the termination component (lines 7-8).

Proving Termination through Conditional Termination 7

Most importantly, we identify the subset of the transitions τ from M for which
σ(R) is a ranking function, and hence can be removed from M (line 9). Finally,
conditional invariants from previous iterations are accumulated so that, in the
end, a global conjunction can be returned (lines 10 and 12).

In essence, this process corresponds to the step-wise construction of a lex-
icographic termination argument. For a location ` at which the component
C is entered, the conjunction of all obtained σ(I`) is then a precondition for
termination. The following theorem states the correctness of procedure CondTerm:

Theorem 1 (CondTerm soundness). Let P be a program, C a component, and
EC its entry transitions. If the procedure call CondTerm(C, EC) returns Q 6= None,
then C is (`,Q(`))-conditionally terminating for any ` ∈ L(C).

Of course, Algo. 1 is an idealized, high-level description of our procedure. In
an implementation of the procedure CondTerm, a number of small changes help
to improve the overall number of solved instances.

Constraint Strengthening. Additional constraints can be added to formula F to
favor conditional invariants that are more likely to be useful. In particular, a
constraint requiring that the conditional invariants are compatible with the entry
transitions and with the previously generated conditional invariants has proven
useful, i.e. ∨

(`s, ρ, `t)∈EC

∃V,V ′ (I ′`t ∧ ρ ∧Q(`t)
′) .

Constraint Softening. Similarly, we can increase the allowed range of models by
turning more of the clauses into soft clauses. For example, this can be used to
allow quasi-ranking functions [30] in addition to ranking functions. Quasi-ranking
functions are functions that satisfy the non-increase condition, but may fail to
decrease or be bounded, or both. By using them to partition transitions and
perform case analysis, programs can also be shown to be terminating.

Pseudo-Invariants of Termination Component. In some circumstances, inductive
properties of the termination component M (i.e., satisfying Consecution only
for transitions in M) can be sound and useful; namely, when the complement of
the property disables a transition.

Formally, let Q be a map from L(P) to F (V) such that Q(˜̀
s) ∧ ρ̃⇒ Q(˜̀

t)
′

for all (˜̀
s, ρ̃, ˜̀

t) ∈ M, and ¬Q(`s) ∧ ρ |= false for some τ = (`s, ρ, `t) ∈ M.
Moreover, assume that Q supports a ranking function R for τ . Then τ can only
be used finitely often. To see this, assume that there is an infinite computation
in which τ occurs infinitely often. Then there is a state at location `s in the
computation from which only transitions in M are taken. Since Q is inductive
over transitions in M, if Q(`s) holds at that state then it holds from then on,
and therefore R proves that τ cannot be executed an infinite number of times.
Otherwise, if Q(`s) does not hold, then τ cannot be executed at all. This weaker
requirement on Q allows removing transitions from M and is easier to satisfy.
Still, it is insufficient to do a case analysis as a full conditional invariant allows.

8 C. Borralleras et al.

`0

`1

̂̀
1

`2

τ0 : true

τ1 : y ≥ 0 ∧ z > 0
∧ x′ = x− z
∧ y′ = y + x
∧ z′ = z + 1

τ2 : y ≥ 0 ∧ z < 0
∧ x′ = x
∧ y′ = y + z
∧ z′ = z − 1

τ3 : y < 0
∧ x′ = x
∧ y′ = y
∧ z′ = z

τ4 : z = 0
∧ x′ = x
∧ y′ = y
∧ z′ = z

τ0
∧ z

′ ≥
0

τ1 ∧ z′ ≥ 0 τ2 ∧ z′ ≥ 0

τ
3

τ4

τ
0 ∧
z ′
<

0

τ1 ∧ z < 0 τ2 ∧ z < 0

τ
2
∧
z
′
<

0

τ
1
∧
z
′
<

0

τ3

τ4

`0 `1 `2
τ0 ∧ z′ ≥ 0

τ1 ∧ z′ ≥ 0

τ3

τ4

`0 `1 `2
τ0 ∧ z′ ≥ 0

∧ x′ ≥ 0

τ1 ∧ z′ ≥ 0 ∧ x′ ≥ 0

τ3

τ4

(a)

(b) (c)

Fig. 3. Unfolding of the program from Fig. 1 for conditional invariant z < 0 at `1 (a),
ensuing narrowing/simplification (b) and narrowing after unfolding for x < 0 at `1 (c).

4 Proving Termination using Conditional Termination

Our key contribution is to leverage conditional termination arguments to perform
a natural case analysis of program executions. In this way, as our analysis
progresses, more and more program runs are excluded from the program analysis,
allowing the method to focus on those parts of the program for which termination
has not been guaranteed yet. The core component of this is a syntactic program
transformation we call unfolding that implements the semantic intuition of
distinguishing program states for which termination has not been proven yet.

4.1 Program Unfoldings

We begin this subsection with an example that illustrates how conditional invari-
ants can be used to unfold the component under consideration.

Example 2. Consider the program from Fig. 1 again. In Ex. 1 it was shown
that all computations for which z < 0 holds at location `1 are finite. In fact, a
byproduct of the proof was that z < 0 is a conditional invariant at location `1.
We show how to exploit this to prove unconditional termination next.

Following the intuition of a case analysis, we unfold the program component
by introducing a copy of it in which we assume that the conditional invariant

Proving Termination through Conditional Termination 9

holds. In our example, we duplicate the location `1, introducing a copy denoted
by ̂̀

1. We also duplicate all transitions in, from and to the component, using
the newly introduced location. However, all copied transitions should also reflect
our case analysis, and are thus strengthened by the conditional invariant z < 0.
In our case analysis, the original component now corresponds to the case that
the conditional invariant does not hold, and thus, all of the original transitions
are strengthened to assume the negation of the conditional invariant. Finally,
to allow for computations where the invariant eventually becomes true, we add
copies of the transitions from the original component to the copied location,
again strengthened by the invariant. The resulting program is shown in Fig. 3(a).

The original program and its unfolding behave equivalently, in particular
regarding termination. However, we already know from Ex. 1 that under the
assumption z < 0, the new component has no infinite executions. Hence, we can
narrow the set of potentially infinite computations and focus on the program
shown in Fig. 3(b), obtained by removing all known-terminating locations (i.e.,̂̀
1) from the unfolding and simplifying. If this narrowed program terminates, we

can conclude that the original program terminates too.
Synthesizing another conditional termination argument for the program from

Fig. 3(b) now yields the ranking function y, supported by the conditional invariant
x < 0 at `1. Then we can unfold with x < 0 again and narrow, obtaining the
program in Fig. 3(c). Finally this program can be proven terminating with ranking
function x without the need of any conditional invariant and, hence, without
precondition. This concludes the proof of termination of the original program.

Note that the unfolding/narrowing mechanism provides not only a termination
proof but also a characterization of the program execution phases. In particular,
our example can be viewed to have three phases, corresponding to the unfoldings
we have applied. One phase corresponds to the case where z < 0 (where the
else-block is repeatedly used), one to the case z > 0 ∧ x < 0, and finally, one
corresponds to the case z > 0 ∧ x ≥ 0. �

To formalize this execution phase-structured proof technique, we first define
the unfolding program transformation:

Definition 4. Let P be a program, C a component of P, EC its entry transitions,
XC its exit transitions, and Q : L(C)→ F (V) a conditional invariant for C. The
unfolding of P is

P̂ = { (`s, ρ ∧ ¬ Q(`t)
′, `t),

(`s, ρ ∧ Q(`t)
′, ̂̀

t),

(̂̀s, ρ ∧ Q(`s), ̂̀
t) | (`s, ρ, `t) ∈ C }

∪ { (`s, ρ ∧ ¬Q(`t)
′, `t),

(`s, ρ ∧ Q(`t)
′, ̂̀

t) | (`s, ρ, `t) ∈ EC }
∪ { (`s, ρ, `t),

(̂̀s, ρ, `t) | (`s, ρ, `t) ∈ XC }
∪ {τ | τ ∈ P \(C ∪ EC ∪ XC)}

10 C. Borralleras et al.

`s `t

̂̀
s

̂̀
t

ρ ∧ ¬Q(`t)
′

ρ ∧Q(
t̀) ′

ρ ∧Q(`s)

`s

`t

̂̀
t

ρ ∧ ¬
Q(`t)

′

ρ ∧Q(`t) ′

`s

̂̀
s

`t

ρ

ρ

(a) (b) (c)

Fig. 4. Transitions in unfolding P̂ for conditional invariant Q corresponding to a
transition τ = (`s, ρ, `t) ∈ P, depending on whether (a) τ ∈ C, (b) τ ∈ EC, (c) τ ∈ XC .

where for each ` ∈ L(C) there is a fresh location ̂̀ such that ̂̀ 6∈ L(P).

Fig. 4 represents graphically how a transition of the original program is
transformed, depending on whether it is a transition of the component, an entry
transition, or an exit transition. The following result states that a program and
its unfolding are semantically equivalent, i.e., that the encoded case analysis is
complete.

Theorem 2. Given states (`0, v0) and (`k, vk) such that `0, `k ∈ L(P), there is
a computation in P of length k of the form (`0, v0) →∗P (`k, vk) if and only if

there is a computation in P̂ of length k of the form (`0, v0)→∗
P̂

(`k, vk) or of the

form (`0, v0)→∗
P̂

(̂̀k, vk).

Now we are ready to formally define the narrowing of a program:

Definition 5. Let P be a program, C a component of P, EC its entry transitions,
and Q : L(C)→ F (V) a conditional invariant for C. The narrowing of P is:

narrow(P) = { (`s, ρ ∧ ¬ Q(`t)
′, `t) | (`s, ρ, `t) ∈ C ∪ EC } ∪

{τ | τ ∈ P −(C ∪ EC)}

The narrowing of a program can be viewed as the result of eliminating the
copies ̂̀ of the locations ` ∈ L(C) in the unfolding P̂ and their corresponding
transitions. Alternatively, one may take the original program P and consider
that for any transition τ = (`s, ρ, `t) ∈ C ∪ EC, the relation is replaced by
ρ∧¬Q(`t)

′. The intuition is that, if a call to CondTerm(C, EC) has been successful

(i.e., Q def
= CondTerm(C, EC) 6= None), by the inductiveness of Q a computation

that satisfies Q(`) for a certain ` ∈ C cannot remain within C indefinitely. Hence
we only need to consider computations such that whenever a location ` ∈ C is
reached, we have that Q(`) does not hold.

Corollary 1. Let P be a program, C a component of P, EC its entry transitions,
and Q : L(C) → F (V) a conditional invariant for C obtained from a call to
CondTerm(C, EC). There is an infinite computation in P that eventually only uses

Proving Termination through Conditional Termination 11

transitions from C if and only if there is such a computation in narrow(P) using
transitions from narrow(C).

Proof. The right to left implication holds by Thm. 2 as narrow(P) ⊆ P̂ . For the
left to right implication, by Thm. 2 an infinite computation of P staying in C
yields an infinite computation of P̂ staying in Ĉ. By induction, for any location
` ∈ L(C) we have that Q(`) is an (unconditional) invariant at location ̂̀of P̂ : now
the initiation condition also holds by definition because all transitions arriving at̂̀ require Q(`) to hold. By Thm. 1, no infinite computation in P̂ staying in Ĉ can

reach a location of the form ̂̀, where ` ∈ L(C). So such an infinite computation is
a computation of narrow(P) that eventually only uses transitions from narrow(C).

ut

Our termination proofs are sequences of relatively simple program transfor-
mations and termination proving techniques. This formal simplicity allows one
to easily implement, extend and certify the technique. As discussed in Ex. 2, the
unfolding/narrowing mechanism provides not only a termination proof, but also
a characterization of the execution phases. In contrast to other works [37], these
phases are obtained semantically from the generated conditional invariants, and
do not require syntactic heuristics.

4.2 Proving Program Termination

So far we have discussed the handling of a single component at a time. By combin-
ing our method with an off-the-shelf safety checker, full program termination can
be proven too. The next example illustrates this while comparing with previous
Max-SMT-based techniques for proving termination [30].

int x = nondet();
int y = nondet();
int z = nondet();
assume(x > z && z ≥ 0);
while (z > 0) {

x = x − 1;
z = z − 1; }

` : while (y < 0)
y = y + x;

Fig. 5. Program that cannot
be proven terminating with the
approach in [30].

Example 3. The method from [30] considers
components following a topological ordering. Each
component is dealt with locally: only its transitions
and entries are taken into account, independently
of the rest of the program. The analysis of a com-
ponent concludes when the component is proven
(unconditionally) terminating. Hence, for the pro-
gram in Fig. 5, the first loop is proven terminating
using the ranking function z. However, if no ad-
ditional information is inferred, then the proof of
termination of the second loop cannot succeed: the
necessary invariant that x ≥ 1 between the two
loops, at program location `, is missing.

On the other hand, the approach proposed here is able to handle this program
successfully. Indeed, the first loop can be proven terminating with z as a ranking
function as observed above. Regarding the second loop, the conditional invariant
x ≥ 1 together with the ranking function −y are generated. To prove x ≥ 1 holds
at ` a safety checker may be used, which then makes a global analysis to verify

12 C. Borralleras et al.

Algorithm 2 Procedure Term for proving or disproving program termination

Input: program P
Output: Yes (resp., No) if P terminates (resp., does not terminate), or ⊥ if unknown
1: S ← stack of components of P
2: while S 6= ∅ ∧ ¬timed out() do
3: C ← Pop(S)
4: E ← EC
5: Q ← CondTerm(C, E)
6: while Q 6= None do
7: if ∀`∈L(C)∩L(E): P is safe for assertion(`,Q(`)) then {Call safety check}
8: break
9: C ← { (`s, ρ ∧ ¬Q(`t)

′, `t) | (`s, ρ, `t) ∈ C } {Narrow component}
10: E ← { (`s, ρ ∧ ¬Q(`t)

′, `t) | (`s, ρ, `t) ∈ E } {Narrow entries}
11: Q ← CondTerm(C, E)

12: if Q = None then return (ProvedNonTermination(C, E ,P) ? No : ⊥)

13: return (S = ∅ ? Yes : ⊥)

the truth of the assertion. Finally full termination can be established. Note that
components may be considered in any order, not necessarily a topological one. �

Ex. 3 illustrates that combining our conditional termination proving technique
with a safety checker is necessary to efficiently handle long and complex programs.

It is also important to note that, as the proof of Corollary 1 indicates, the
narrowed program is termination-equivalent to the original program. In particular,
this means that a non-termination proof for the narrowed program is a non-
termination proof for the original program, as only terminating computations
have been discarded by the transformation. Further, our program transformation
does not only add information to the entry transitions (as in [32]) but also to all
transitions occurring in the component under analysis. This significantly improves
the precision of our otherwise unchanged non-termination analysis (cf. Sect. 5).

Altogether, our procedure for proving or disproving program termination
is described in Algo. 2. It takes as input a program P and returns Yes if the
program can be proved to terminate, No if it can be proved not to terminate, or
⊥ otherwise. Components are handled in sequence one at a time provided the
time limit has not been exceeded (line 2). For each component, preconditions for
termination are computed (lines 5 and 11), which are then checked to hold by
calling an external safety checker (line 7). If this test is passed, the component is
guaranteed to terminate and the next one can be considered. Otherwise narrowing
is applied (lines 9-10) and the process is repeated. If at some point the generation
of preconditions for termination fails, then non-termination is attempted by
calling an out-of-the-box non-termination prover (line 12). Note that the outer
loop can easily be parallelized (i.e., all components can be considered at the same
time), and that similarly, the generation of more preconditions can be attempted
in parallel to the safety checks for already generated termination conditions. The
correctness of Algo. 2 follows directly from Corollary 1.

Proving Termination through Conditional Termination 13

5 Related Work & Experimental Results

We build on a rich tradition of methods to prove termination [1, 10, 16, 18, 21,
22, 25, 26, 28, 32, 36, 39, 42–44] and non-termination [4, 13, 14, 24, 29, 46] of im-
perative programs. Most notably, our constraint-based approach to conditional
termination is an extension of existing work on ranking function synthesis using
constraint solvers [2,3,5,8,23,30,33,35], and is most closely related to our earlier
work on using Max-SMT solving to infer quasi-ranking functions [30]. There, an
independent invariant generation procedure was used before unconditional termi-
nation arguments were synthesized for program components. Thus, invariants
were not generated “on demand” and the method fails on examples such as Ex. 3.

The key contribution of our method is to use conditional termination argu-
ments to segment the state space for the remainder of the analysis. A related idea
was used in TRex [25] and HipTNT+ [32], which alternate termination and non-
termination proving techniques in their proof search. However, both approaches
only use preconditions for non-termination to segment the state space, and thus
are reliant on non-termination techniques. As finding non-termination arguments
is an ∃∀∃ problem (there exists a state set such that for all its states there exists
a computation leading back to it), these methods tend to be significantly weaker
in practice than those based on termination, which is an ∃∀ problem (there exists
a ranking function such that all computations decrease it).

A related idea is counterexample-guided termination proving [10,16,26,28,36],
in which a speculated termination argument is refined until it covers all program
executions. Thus, these methods grow a set of terminating program states,
whereas our method shrinks the set of potentially non-terminating states. In
practice, “ignoring” the terminating states in a safety prover is often a non-trivial
semantic operation, in contrast to the effects of our syntactic narrowing operation.

Proving conditional termination has seen less interest than full termination
analysis. A first technique combined constraint-based methods for finding poten-
tial ranking functions with quantifier elimination [15] to infer preconditions. More
recently, policy iteration-based methods [34], backwards reasoning in the abstract
interpretation framework [45] and an adaptation of conflict-driven learning from
satisfiability solving [17] have been adapted to find conditions for termination.
Our algorithm CondTerm differs in its relative simplicity (by delegating the major-
ity of the work to a constraint solver), and our procedure Term could combine it
with or replace it by other approaches. Finally, in a related line of work, decision
procedures for conditional termination on restricted programming languages (e.g.,
only using linear or affine operations) have been developed [7].

Evaluation To evaluate our method, we have implemented Algo. 2 in the tool
VeryMax, using it as a safety prover [12] and a non-termination prover [29]. The
effectiveness of VeryMax depends crucially on the underlying non-linear Max-
SMT solver, described in [31]. All experiments were carried out on the StarExec
cluster [40], whose nodes are equipped with Intel Xeon 2.4GHz processors. 8 We

8 A binary of VeryMax as well as the detailed results of the experiments can be found
at http://www.cs.upc.edu/~albert/VeryMax.html.

14 C. Borralleras et al.

have compared VeryMax with a range of competing termination provers on three
benchmark sets. The first two example sets are the benchmark suites Integer
Transition Systems and C Integer used in termCOMP 2016 [41], on which
we compare with a superset of the tools [22,26,27,32,44] that competed in these
categories in the 2016 edition9. Following the rules of the competition, we use a
wall clock timeout of 300 seconds for the C Integer benchmark set, and a wall
clock timeout of 30 seconds for the Integer Transition Systems benchmark
set. The results of these experiments are displayed in Tab. 1, where the “Term”
(resp. “NTerm”) column indicates the number of examples proven terminating
(resp. non-terminating), “Fail” any kind of prover failure, and “TO” the number
of times the timeout was reached. Finally, “Total (s)” indicates the total time
spent on all examples, in seconds.

C Integer Integer Transition Systems

Tool Term NTerm Fail TO Total (s) Term NTerm Fail TO Total (s)

AProVE 210 73 39 13 7547.68 623 386 11 202 9651.05
Ctrl – – – – – 348 0 421 453 17229.10
HipTNT+ 210 95 25 5 2615.80 – – – – –
SeaHorn 171 73 19 72 22499.33 – – – – –
Ultimate 208 98 23 6 4745.79 – – – – –
VeryMax 213 100 22 0 2354.94 620 412 103 87 8481.39

Table 1. Experimental results on benchmarks from termCOMP 2016.

Tool Term NTerm Fail TO Total (s)

AProVE 222 76 41 19 10235.44
SeaHorn 189 75 22 72 34760.69
Ultimate 224 103 25 6 7882.13
VeryMax 231 101 26 0 2444.29

Table 2. Results on SV-COMP benchmarks.

We additionally evaluated
our tool on the examples from
the Termination category of
the Software Verification Com-
petition 2016, comparing to
the participants in 2016 [22,
26,44] with a CPU timeout of
900 seconds. As VeryMax has
no support for recursion and pointers at the moment, we removed 273 examples
using these features and tested the tools on the remaining 358 examples. The re-
sults of this experiment are shown in Tab. 2. Altogether, the overall experimental
results show that our method is not only the most powerful combined termination
and non-termination prover, but also more efficient than all competing tools.

NTerm Exclusive

Narrowing 412 82
Original 334 4

Table 3. Impact of narrowing on
non-termination proofs.

Moreover, to analyze the effect of our nar-
rowing technique on non-termination proofs,
we experimented with the Integer Tran-
sition Systems benchmark set. Namely, in
Tab. 3 we compare the performance of Very-
Max when trying to prove non-termination

9 Due to incompatibilities of input formats, some tools could not be run on some of
the benchmark sets. This is indicated in the tables with a dash −.

Proving Termination through Conditional Termination 15

of narrowed components (Narrowing row) against using the original component
(Original row). For each case, column “NTerm” indicates the examples proven
non-terminating, and column “Exclusive” identifies those that could only be
proven with that approach. The results show that removing (conditionally) ter-
minating computations from the analysis significantly improves the effectiveness
of the analysis. Still, the more complex narrowed components make the non-
termination procedure in VeryMax time out in 4 cases that are otherwise proved
non-terminating when using the original program components.

Finally, we studied the gain obtained with constraint strengthening, constraint
softening and pseudo-invariants of the termination component (see Section 3).
While constraint softening and pseudo-invariants help in proving termination in
few cases at the cost of a time overhead, constraint strengthening significantly
improves both the number of problems proved terminating and the time required
to do so.

6 Conclusions and Future Work

We have proposed a new method for modular termination proofs of integer
programs. A program is decomposed into program components, and conditional
termination arguments are sought for each component separately. Termination
arguments are synthesized iteratively using a template-based approach with a
Max-SMT solver as a constraint solving engine. At each iteration, conditional
invariants and ranking functions are generated which prove termination for a
subset of program execution states. The key step of our technique is to exclude
these states from the remaining termination analysis. This is achieved by narrow-
ing, i.e., strengthening the transitions of the component and its entry transitions
with the negation of the conditional invariant. This operation of narrowing can
be viewed as unfolding the program in two phases, namely when the conditional
termination argument holds and when it does not, and focusing on the latter, for
which termination is not guaranteed yet.

In the future, we want to remove some of the limitations of our method. For
example, we do not support the heap at this time, and combining our conditional
termination proving procedure with a heap analysis would greatly extend the
applicability of our approach. Moreover, as in many other techniques, numbers are
treated as mathematical integers, not machine integers. However, a transformation
that handles machine integers correctly by inserting explicit normalization steps
at possible overflows [19] could be added. We are also interested in formally
verifying our technique and to produce certificates for termination that can be
checked by theorem provers [11]. Finally, we plan to extend our technique to
proving bounds on program complexity. Finding such bounds is closely related
to termination proving, and also requires to distinguish different phases of the
execution precisely [20, 38]. Our termination proving method does this naturally,
and an adaption to complexity could thus yield more precise bounds.

16 C. Borralleras et al.

References

1. E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termi-
nation analysis of Java Bytecode. In FMOODS, 2008.

2. C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional rankings,
program termination, and complexity bounds of flowchart programs. In SAS, 2010.

3. R. Bagnara, F. Mesnard, A. Pescetti, and E. Zaffanella. A new look at the automatic
synthesis of linear ranking functions. IC, 215, 2012.

4. A. Bakhirkin and N. Piterman. Finding recurrent sets with backward analysis and
trace partitioning. In TACAS, 2016.

5. A. M. Ben-Amram and S. Genaim. On the linear ranking problem for integer
linear-constraint loops. In POPL, 2013.

6. A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors. Handbook of
Satisfiability. IOS Press, 2009.

7. M. Bozga, R. Iosif, and F. Konecný. Deciding conditional termination. LCMS,
10(3), 2014.

8. A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking with reachability. In
CAV, 2005.

9. M. Brockschmidt, B. Cook, and C. Fuhs. Better termination proving through
cooperation. In CAV, 2013.

10. M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, and N. Piterman. T2: temporal
property verification. In TACAS, 2016.

11. M. Brockschmidt, S. J. Joosten, R. Thiemann, and A. Yamada. Certifying safety
and termination proofs for integer transition systems. In WST, 2016.

12. M. Brockschmidt, D. Larraz, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio.
Compositional safety verification with max-smt. In FMCAD, 2015.

13. M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated detection of
non-termination and NullPointerExceptions for JBC. In FoVeOOS, 2011.

14. H. Y. Chen, B. Cook, C. Fuhs, K. Nimkar, and P. W. O’Hearn. Proving nontermi-
nation via safety. In TACAS, 2014.

15. B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv. Proving condi-
tional termination. In CAV, 2008.

16. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.
In PLDI, 2006.

17. V. D’Silva and C. Urban. Conflict-driven conditional termination. In CAV, 2015.

18. S. Falke, D. Kapur, and C. Sinz. Termination analysis of C programs using compiler
intermediate languages. In RTA, 2011.

19. S. Falke, D. Kapur, and C. Sinz. Termination analysis of imperative programs
using bitvector arithmetic. In VSTTE, 2012.

20. A. Flores-Montoya and R. Hähnle. Resource analysis of complex programs with
cost equations. In APLAS, pages 275–295, 2014.

21. P. Ganty and S. Genaim. Proving termination starting from the end. In CAV, 2013.

22. J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker,
P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Analyzing program
termination and complexity automatically with AProVE. JAR, 2016. To appear.

23. L. Gonnord, D. Monniaux, and G. Radanne. Synthesis of ranking functions using
extremal counterexamples. In PLDI, 2015.

24. A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G. Xu. Proving
non-termination. In POPL, 2008.

Proving Termination through Conditional Termination 17

25. W. R. Harris, A. Lal, A. V. Nori, and S. K. Rajamani. Alternation for termination.
In SAS, 2010.

26. M. Heizmann, J. Hoenicke, and A. Podelski. Termination analysis by learning
terminating programs. In CAV, 2014.

27. C. Kop and N. Nishida. Constrained term rewriting tool. In LPAR-20, 2015.
28. D. Kroening, N. Sharygina, A. Tsitovich, and C. M. Wintersteiger. Termination

analysis with compositional transition invariants. In CAV, 2009.
29. D. Larraz, K. Nimkar, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio. Proving

non-termination using Max-SMT. In CAV, 2014.
30. D. Larraz, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio. Proving termination

of imperative programs using Max-SMT. In FMCAD, 2013.
31. D. Larraz, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio. Minimal-model-

guided approaches to solving polynomial constraints and extensions. In SAT,
2014.

32. T. C. Le, S. Qin, and W. Chin. Termination and non-termination specification
inference. In PLDI, 2015.

33. J. Leike and M. Heizmann. Ranking templates for linear loops. In TACAS, 2014.
34. D. Massé. Policy iteration-based conditional termination and ranking functions. In

VMCAI, 2014.
35. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. In VMCAI, 2004.
36. A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model

checking with abstraction refinement. In PADL, 2007.
37. R. Sharma, I. Dillig, T. Dillig, and A. Aiken. Simplifying loop invariant generation

using splitter predicates. In CAV, 2011.
38. M. Sinn, F. Zuleger, and H. Veith. A simple and scalable static analysis for bound

analysis and amortized complexity analysis. In CAV, pages 745–761, 2014.
39. F. Spoto, F. Mesnard, and É. Payet. A termination analyser for Java Bytecode

based on path-length. TOPLAS, 32(3), 2010.
40. A. Stump, G. Sutcliffe, and C. Tinelli. Starexec: a cross-community infrastructure

for logic solving. In IJCAR, 2014.
41. Termination Competition. http://termination-portal.org/wiki/Termination_

Competition.
42. A. Tsitovich, N. Sharygina, C. M. Wintersteiger, and D. Kroening. Loop summa-

rization and termination analysis. In TACAS, 2011.
43. C. Urban. The abstract domain of segmented ranking functions. In SAS, 2013.
44. C. Urban, A. Gurfinkel, and T. Kahsai. Synthesizing ranking functions from bits

and pieces. In TACAS, 2016.
45. C. Urban and A. Miné. A decision tree abstract domain for proving conditional

termination. In SAS, 2014.
46. H. Velroyen and P. Rümmer. Non-termination checking for imperative programs.

In TAP, 2008.

