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Abstract. This paper positively solves an open problem if it is possible
to provide a Hilbert system to Epistemic Logic of Friendship (EFL) by
Seligman, Girard and Liu. To find a Hilbert system, we first introduce a
sound, complete and cut-free tree (or nested) sequent calculus for EFL,
which is an integrated combination of Seligman’s sequent calculus for
basic hybrid logic and a tree sequent calculus for modal logic. Then we
translate a tree sequent into an ordinary formula to specify a Hilbert
system of EFL and finally show that our Hilbert system is sound and
complete for an intended two-dimensional semantics.
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1 Introduction

Epistemic Logic of Friendship (EFL) is a version of two-dimensional modal logic
proposed by [22,23,24]. Compared to the ordinary epistemic logic [14], one of the
key features of their logic is to encode the information of agents into the object
language by a technique of hybrid logic [3,1]. Then, a propositional variable p
can be read as an indexical proposition such as “I am p” and we may formal-
ize the sentences like “I know that all my friends is p” or “Each of my friends
knows that he/she is p.” Moreover, the authors of [23,24] added a dynamic
mechanism to EFL for capturing public announcements [19], announcements to
all the friends, and private announcements [2] and established a relative com-
pleteness result (cf. [23,24,12]), i.e., they provided a set of recursion axioms for
dynamic operators. So once we can provide a sound and complete proof system
for EFL, i.e., the fragment without dynamic operators, we can also establish the
semantic completeness of the dynamic extension of EFL. Therefore, this paper
focuses on an open problem of axiomatizing EFL in terms of Hilbert system,
i.e., the static part of their framework.

A difficulty of the problem comes from a combination of modal logic for
agents’ knowledge and hybrid logic for a friendship relation among agents. If
we combine two hybrid logics over two-dimensional semantics of [22,23,24], it is
noted that there is an axiomatization of all valid formulas in the semantics by [20,
p.471]. Our approach to tackle the problem is via a sequent calculus, whose idea
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is originally from Gentzen. In particular, our notion of sequent for EFL can
be regarded as a combination of a tree or nested sequent [15,8] for modal logic
and @-prefixed sequent [21,7] for hybrid logic. One of the merits of our notion
of sequent is that we can still translate our sequent into an ordinary formula.
This allows us to specify our desired Hilbert system for EFL. We note that [9]
independently provided a prefixed tableau system for a dynamic extension of
EFL. There are at least three points we should emphasize on our work. First,
our tree sequent system is quite simpler than the tableau system given in [9],
i.e., the number of rules of our sequent system is almost half of the number
of rules of their system. Second, it is not clear if a prefixed formula in [9] for
the tableau calculus can be translated into an ordinary formula. Their result is
not concerned with Hilbert systems. Third, their syntax contains a special kind
of propositional variable (called feature proposition) and they include a tableau
rule called propositional cut to handle such propositions. On the other hand, we
can show that our tree sequent calculus enjoys the cut elimination theorem, the
most fundamental theorem in proof-theory.

We proceed as follows. Section 2 introduces the syntax and semantics of EFL.
Section 3 provides a tree sequent calculus for EFL and establishes the soundness
of the sequent calculus (Theorem 1). Section 4 establishes a completeness result
of a cut-free fragment of our sequent calculus (Theorem 2). As a corollary, we
also provide a semantic proof of the cut elimination theorem of our sequent
calculus (Theorems 3 and 4, Corollary 1). Section 5 specifies a Hilbert system of
EFL, and provides a syntactic proof of the equipollence between our proposed
Hilbert system and our tree sequent calculus, which implies the soundness and
completeness results for our Hilbert system (Corollary 2). Section 6 extends our
technical results to cover extensions of EFL where a modal operator for states
(or a knowledge operator) obeys KT, S4 or S5 axioms and a friendship relation
satisfies a certain form of universal property (Theorems 5 and 6, Corollary 3).
The result of this section subsumes the logic given in [9], provided we drop the
dynamic operator from the syntax of [9]. Section 7 concludes this paper.

2 Syntax and Two-dimensional Kripke Semantics

Our syntax L consists of the following vocabulary: a countably infinite set
Prop = { p, q, r, . . . } of propositional variables, a countably infinite set Nom =
{n,m, l, . . . } of agent nominal variables, the Boolean connectives of → (the im-
plication) and ⊥ (the falsum), the satisfaction operators @ and the friendship
operator F (read as “all my friends are ...”) as well as the modal operator �
which may be regarded as the knowledge operator. We note that an agent nom-
inal n ∈ Nom is a syntactic name of an agent or an individual, which amounts
to a constant symbol of the first-order logic, while n is read indexically as “I am
n.” Similarly, we read a propositional variable p ∈ Prop also indexically by “I am
p,” e.g., “I am in danger.” The set Form of formulas in L is defined inductively
as follows:

Form 3 ϕ ::= n | p | ⊥ |ϕ→ ϕ |@nϕ |Fϕ |�ϕ,
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where n ∈ Nom and p ∈ Prop. Boolean connectives other than → or ⊥ are
introduced as ordinary abbreviations. We define the dual of � as ♦ := ¬�¬ and
the dual of F as 〈F〉 := ¬F¬. Moreover, a formula of the form @nϕ is said to be
@-prefixed. Let us read � as “I know that.” Here are some examples of how to
read formulas:

– �p, read as “I know that I am p.”

– @n�p, read as “n knows that she is p.”

– �@np, read as “I know that agent n is p.”

– Fp, read as “all my friends are p.”

– F�p, read as “all my friends know that they are p.”

– �Fp, read as “I know that all my friends are p.”

– @n〈F〉m, read as “agent m is a friend of agent n.”

We say that a mapping σ : Prop ∪ Nom → Form is a uniform substitution if σ
uniformly substitutes propositional variables by formulas and agent nominals by
agent nominals and we use ϕσ to mean the result of applying a uniform substi-
tution σ to ϕ. In particular, we use ϕ[n/k] to mean the result of substituting
each occurrence of agent nominal k in ϕ uniformly with agent nominal n.

A model M for our syntax L is a tuple

(W,A, (Ra)a∈A, (�w)w∈W , V ),

where W is a non-empty set of possible states, A is a non-empty set of agents,
Ra is a binary relation on W (a ∈ A), �w is a binary relation on A (called a
friendship relation, w ∈W ), V is a valuation function Prop∪Nom→ P(W ×A)
such that V (n) is a subset of W × A of the form W × { a }. When V (n) =
W ×{ a }, we denote such unique element a by n. We note that a semantic value
n of a nominal n is rigid over all possible states. We do not require any property
for Ra and �w but we will come back to this point in Section 6. We say that a
tuple F = (W,A, (Ra)a∈A, (�w)w∈W ) without a valuation is a frame.

Let M = (W,A, (Ra)a∈A, (�w)w∈W , V ) be a model. Given a pair (w, a) ∈
W × A and a formula ϕ, the satisfaction relation M, (w, a) |= ϕ (read “agent a
satisfies ϕ at w in M ”) inductively as follows:

M, (w, a) |= p iff (w, a) ∈ V (p),
M, (w, a) |= n iff n = a,
M, (w, a) 6|= ⊥
M, (w, a) |= ϕ→ ψ iff M, (w, a) |= ϕ implies M, (w, a) |= ψ
M, (w, a) |= @nϕ iff M, (w, n) |= ϕ,
M, (w, a) |= Fϕ iff (a �w b implies M, (w, b) |= ϕ) for all agents b ∈ A,
M, (w, a) |= �ϕ iff (wRav implies M, (v, a) |= ϕ) for all states v ∈W.

Given a class M of models, we say that a formula ϕ is valid in M when M, (w, a) |=
ϕ for all pairs (w, a) in M and all models M ∈M. This paper tackles the question
if the set of all valid formulas in the class of all models is axiomatizable.
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3 Tree Sequent Calculus of Epistemic Logic of Friendship

A label is inductively defined as follows: Any natural number is a label; if α is a
label, n is an agent nominal in Nom and i is a natural number, then α ·n i is also
a label. When β is α ·n i, then we say that β is an n-child of α or that α is an
n-parent of β. A tree T is a set of labels such that the set contains the unique
natural number j as the root label and the set is closed under taking the parent
of a label, i.e., α ·n i ∈ T implies α ∈ T for all labels α, agent nominals n and
natural numbers i. For example, all of 0, 0 ·n 1 and 0 ·k 2 are labels and they
form a finite tree.

Fig. 1. A tree sequent

Given a label α and an @-prefixed formula ϕ, the expression α : ϕ is said
to be a labelled formula, where recall that an @-prefixed formula is of the form
@nϕ. A tree sequent is an expression of the form

Γ
T⇒ ∆

where Γ and ∆ are finite sets of labelled formulas, T is a finite tree of labels,

and all the labels in Γ and ∆ are in T . A tree sequent “Γ
T⇒ ∆” is read as

“if we assume all labelled formulas in Γ , then we may conclude some labelled

formulas in ∆.” A tree sequent 0 : @nϕ, 0 ·k 2 : @mρ
T⇒ 0 : @mψ, 0 ·n 1 : @kθ

is represented as in Fig. 1, where T = { 0, 0 ·n 1, 0 ·k 2 }. That is, 0, 0 ·n 1 and
0 ·k 2 are “addresses” of the root, the left leaf, and the right leaf, respectively.
Therefore, our tree sequent is a finite tree, each of which nodes has an @-prefixed
sequent as given in [21,7].

Table 1 provides all the initial sequents and all the inference rules of tree
sequent calculus TEFL, where recall that ϕ[m/k] is the result of substituting
each occurrence of agent nominal k in ϕ with agent nominal m. The system
without the cut rule is denoted by TEFL−. All the initial sequents and inference
rules except (rigid=), (wlab), (�R) and (�L) originate from sequent calculus for
hybrid logic in terms of @-prefixed sequents (cf. [21,7] ). The inference rules
(wlab), (�R) and (�L) reflect the idea of tree or nested sequent calculus for
modal logic (cf. [15,8]). Finally the rule (rigid=) encodes the semantic idea that
a semantic value of a nominal is rigid, i.e., the same through all possible states.

A derivation in TEFL (or TEFL−) is a finite tree generated from initial
sequents by inference rules of TEFL (or TEFL−, respectively). The height of a
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Table 1. Tree Sequent Calculus TEFL

(⊥) α : @n⊥, Γ
T⇒ ∆ (id) α : @nϕ, Γ

T⇒ ∆,α : @nϕ

α : @nm,α : ϕ[n/k], Γ
T⇒ ∆

α : @nm,α : ϕ[m/k], Γ
T⇒ ∆

(rep=1)
α : @nm,α : ϕ[m/k], Γ

T⇒ ∆

α : @nm,α : ϕ[n/k], Γ
T⇒ ∆

(rep=2)

α : @nn, Γ
T⇒ ∆

Γ
T⇒ ∆

(ref=)
β : @nm,Γ

T⇒ ∆

α : @nm,Γ
T⇒ ∆

(rigid=)

α : @nϕ, Γ
T⇒ ∆,α : @nψ

Γ
T⇒ ∆,α : @n(ϕ→ ψ)

(→R)
Γ
T⇒ ∆,α : @nϕ α : @nψ, Γ

T⇒ ∆

α : @n(ϕ→ ψ), Γ
T⇒ ∆

(→L)

Γ
T⇒ ∆,α : @mϕ

Γ
T⇒ ∆,α : @n@mϕ

(@R)
α : @mϕ, Γ

T⇒ ∆

α : @n@mϕ, Γ
T⇒ ∆

(@L)

α : @n〈F〉m,Γ
T⇒ ∆,α : @mϕ

Γ
T⇒ ∆,α : @nFϕ

(FR)∗
Γ
T⇒ ∆,α : @n〈F〉m α : @mϕ, Γ

T⇒ ∆

α : @nFϕ, Γ
T⇒ ∆

(FL)

Γ
T ∪{ γ }⇒ ∆, γ : @nϕ

Γ
T⇒ ∆,α : @n�ϕ

(�R)†
β : @nϕ, Γ

T⇒ ∆

α : @n�ϕ, Γ
T⇒ ∆

(�L)‡

Γ
T⇒ ∆

Γ
T ∪{α}⇒ ∆

(wlab)?
Γ
T⇒ ∆,α : @nϕ α : @nϕ,Π

T⇒ Σ

Γ,Π
T⇒ ∆,Σ

(Cut)

∗: m is a fresh agent nominal in the lower sequent; †: γ is an n-child of α which is fresh
in the lower sequent; ‡: β is an n-child of α; ?: T ∪ {α} is a tree of labels.

derivation is defined as the maximum length of branches in the derivation from

the end (or root) sequent to an initial sequent. A tree sequent Γ
T⇒ ∆ is said to

be provable in TEFL (or TEFL−) if there is a derivation in TEFL (or TEFL−,

respectively) such that the root of the tree is Γ
T⇒ ∆.

Let M = (W,A, (Ra)a∈A, (�w)w∈W , V ) be a model and T a tree of labels. A
function f : T → W is a T -assignment in M if, whenever β is an n-child of α
in T , f(α)Rnf(β) holds. When it is clear from the context, we often drop “T -”
from “T -assignment”. Given any labelled formula α : @nϕ with α ∈ T and any
T -assignment in M, we define the satisfaction for a labelled formula as follows:

M, f |= α : @nϕ iff M, (f(α), n) |= ϕ.

where “M, f |= α : @nϕ” is read as “α : @nϕ is true at (M, f)”. Given a tree

sequent Γ
T⇒ ∆ and a T -assignment in M, we say that Γ

T⇒ ∆ is true in (M, f)

(notation: M, f |= Γ
T⇒ ∆) if, whenever all labelled formulas of Γ is true in

(M, f), some labelled formulas of ∆ is true in (M, f). The following theorem is
easy to establish.

Theorem 1 (Soundness of TEFL). If a tree sequent Γ
T⇒ ∆ is provable in

TEFL then M, f |= Γ
T⇒ ∆ for all models M and all assignments f .
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Let us say that an inference rule is height-preserving admissible in TEFL− (or
TEFL) if, whenever all uppersequents (premises) of the inference rule is provable
by derivations with height no more than n, then the lowersequent (conclusion)
of the rule is provable by a derivation whose height is at most n. By induction
on height n of a derivation, we can prove the following.

Proposition 1. (i) The following substitution rule (sub) is height-preserving
admissible in TEFL− and TEFL:

Γ
T⇒ ∆

Γσ
T σ⇒ ∆σ

(sub)
,

where σ is a uniform substitution, T σ is the resulting tree by substituting
agent nominals in T by σ, Θσ := {ασ : ϕσ |α : ϕ ∈ Θ } and ασ ∈ T σ is the
corresponding label to α ∈ T by σ.

(ii) The following weakening rules (wR) and (wL) are height-preserving admis-
sible in TEFL− and TEFL.

Γ
T⇒ ∆

Γ
T⇒ ∆,α : @nϕ

(wR)
,

Γ
T⇒ ∆

α : @nϕ, Γ
T⇒ ∆

(wL)
.

4 Semantic Completeness of Tree Sequent Calculus of
Epistemic Logic of Friendship

In what follows in this section, sets Γ , ∆, etc. of labelled formulas and a tree
T of labels can be possibly (countably) infinite. Following this change, we say

that a possibly infinite tree-sequent Γ
T⇒ ∆ is provable in TEFL− if there exist

finite sets Γ ′ ⊆ Γ and ∆′ ⊆ ∆ and finite subtree T ′ of T such that Γ ′
T ′⇒ ∆′ is

provable in TEFL−.

Definition 1 (Saturated tree sequent). A possibly infinite tree sequent Γ
T⇒

∆ is saturated if it satisfies the following conditions:

(rep1) If α : @nm ∈ Γ and α : ϕ[n/k] ∈ Γ then α : ϕ[m/k] ∈ Γ .
(rep2) If α : @mn ∈ Γ and α : ϕ[n/k] ∈ Γ then α : ϕ[m/k] ∈ Γ .
(ref=) α : @nn ∈ Γ for all labels α ∈ T .
(rigid=) If α : @nm ∈ Γ then β : @nm ∈ Γ for all labels β ∈ T .
(→r) If α : @n(ϕ→ ψ) ∈ ∆ then α : @nϕ ∈ Γ and α : @nψ ∈ ∆.
(→l) If α : @n(ϕ→ ψ) ∈ Γ then α : @nϕ ∈ ∆ or α : @nψ ∈ Γ .
(@r) If α : @n@mϕ ∈ ∆ then α : @mϕ ∈ ∆.
(@l) If α : @n@mϕ ∈ Γ then α : @mϕ ∈ Γ .
(Fr) If α : @nFϕ ∈ ∆ then α : @n〈F〉m ∈ Γ and α : @mϕ ∈ ∆ for some agent

nominal m.
(Fl) If α : @nFϕ ∈ Γ then α : @n〈F〉m ∈ ∆ or α : @mϕ ∈ Γ for all agent

nominals m.
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(�r) If α : @n�ϕ ∈ ∆ then β : @nϕ ∈ ∆ for some n-child β of α.
(�l) If α : @n�ϕ ∈ Γ then β : @nϕ ∈ Γ for all n-children β of α.

Lemma 1 (Saturation lemma). Let Γ
T⇒ ∆ be an unprovable tree sequent

in TEFL−. Then, there exists a saturated (possibly infinite) sequent Γ+ T
+

⇒ ∆+

such that it is still unprovable in TEFL− and it extends the original tree sequent,
i.e., Γ ⊆ Γ+, ∆ ⊆ ∆+ and T ⊆ T +.

Proof. Let Γ
T⇒ ∆ be an unprovable tree sequent in TEFL−. Let (αi : @niϕi)i∈ω

be an enumeration of all labelled formulas such that each labelled formula occurs
infinitely often. In what follows, we inductively define a sequence (Γi

Ti⇒ ∆i)i∈ω
of unprovable tree sequents in TEFL− such that Γi ⊆ Γi+1, ∆i ⊆ ∆i+1 and

Ti ⊆ Ti+1 for all i ∈ ω. (Basis) When i = 0, a tree sequent Γ0
T0⇒ ∆0 is defined

as the tree sequent Γ
T⇒ ∆ which is clearly unprovable in TEFL−.

(Inductive Step) Suppose that we have defined (Γi
Ti⇒ ∆i)06i6j . We define

Γj+1
Tj+1⇒ ∆j+1 in the following two steps.

Step 1: This step expands Γj by the rules (rep=1), (rep=2), (ref=) and (rigid=)
while ∆j and Tj are unchanged. First, we enumerate all the finite pairs of
the form

(α : @nm,α : ϕ[n/k]) or (α : @mn, α : ϕ[n/k])

found in Γj and for each such pair we add α : ϕ[m/k] to Γj to define the

expanded set as Γ rep
j . It is easy to see that Γ rep

j

Tj⇒ ∆j is unprovable in

TEFL− by (rep=1) and (rep=2). Second, we define

Γ ref
j := {α : @nn |α ∈ Tj and n occurs in Γ rep

j

Tj⇒ ∆j }.

It is immediate to see that Γ ref
j

Tj⇒ ∆j is unprovable in TEFL− by (ref=).

Finally we define Γ=
j := {β : @nm |α : @nm ∈ Γ ref

j and β ∈ Tj }. Then the

unprovability of Γ=
j

Tj⇒ ∆j in TEFL− is due to (rigid=). We note that Γ=
j is

still finite.

Step 2: This step expands the unprovable tree sequent Γ=
j

Tj⇒ ∆j by logical
rules, depending on the form of the j-th element αj : @njϕj of our enumer-
ation of labelled formulas.

– Let ϕj be of the form ψ1 → ψ2 and αj : @nj
(ψ1 → ψ2) ∈ Γ=

j . Then
either

Γ=
j

Tj⇒ ∆j , αj : @nj
ψ1 or αj : @nj

ψ2, Γ
=
j

Tj⇒ ∆j

is unprovable in TEFL− by (→ L). We choose an unprovable tree se-

quent as Γj+1
Tj+1⇒ ∆j+1.

– Let ϕj be of the form ψ1 → ψ2 and αj : @nj (ψ1 → ψ2) ∈ ∆j . Then

αj : @nj
ψ1, Γ

=
j

Tj⇒ ∆j , αj : @nj
ψ2
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is unprovable in TEFL− by (→ R) and it is chosen as Γj+1
Tj+1⇒ ∆j+1.

– Let ϕj be of the form @mψ and αj : @nj
@mψ ∈ Γ=

j . Then

αj : @mψ1, Γ
=
j

Tj⇒ ∆j

is unprovable in TEFL− by (@L) and it is chosen as Γj+1
Tj+1⇒ ∆j+1.

– Let ϕj be of the form @mψ and αj : @nj@mψ ∈ ∆j . Then

Γ=
j

Tj⇒ ∆j , αj : @mψ1

is unprovable in TEFL− by (@R) and it is chosen as Γj+1
Tj+1⇒ ∆j+1.

– Let ϕj be of the form Fψ and αj : @nj
Fψ ∈ Γ=

j . Let m0, . . ., ml be all

the finite agent nominals occuring in Γ=
j

Tj⇒ ∆j . We define an increasing

sequence (Γ
(i)
j

Tj⇒ ∆
(i)
j )06i6l+1 of unprovable tree sequent in TEFL−

as follows (it is noted that Tj is unchanged in this process). We put

Γ
(i)
j

Tj⇒ ∆
(i)
j := Γ=

j

Tj⇒ ∆j . Suppose that we have constructed (Γ
(i)
j

Tj⇒
∆

(i)
j )16i6h. Then either

Γ
(h)
j

Tj⇒ ∆
(h)
j , αj : @nj 〈F〉mh or αj : @mh

ψ, Γ
(h)
j

Tj⇒ ∆
(h)
j

is unprovable in TEFL− by the rule (FL). We choose an unprovable tree

sequent as Γ
(h+1)
j

Tj⇒ ∆
(h+1)
j . Finally we define

Γj+1
Tj+1⇒ ∆j+1 := Γ

(l+1)
j

Tj⇒ ∆
(l+1)
j .

– Let ϕj be of the form Fψ and αj : @njFψ ∈ ∆j . Let m be a fresh agent

nominal not occuring in Γ=
j

Tj⇒ ∆j and define

Γj+1
Tj+1⇒ ∆j+1 := @nj 〈F〉m,Γ=

j

Tj⇒ ∆j , αj : @mψ,

whose unprovability in TEFL− is assured by the rule (FR).
– Let ϕj be of the form �ψ and αj : @nj

�ψ ∈ Γ=
j . Let us enumerate all

finite nj-children of αj in Tj as β1, . . ., βh and define Γj+1
Tj+1⇒ ∆j+1 as

β1 : @njψ, . . . , βh : @njψ, Γ
=
j

Tj⇒ ∆j , which is unprovable in TEFL− by
the rule (�L).

– Let ϕj be of the form �ψ and αj : @nj
�ψ ∈ ∆j . Let β be a fresh label

not occuring in Γ=
j

Tj⇒ ∆j such that β is an nj-child of β, and define

Γj+1
Tj+1⇒ ∆j+1 := Γ=

j

Tj∪{ β }⇒ ∆j , β : @nj
ψ,

whose unprovability in TEFL− is assured by the rule (�R).

– Otherwise, Γj+1
Tj+1⇒ ∆j+1 is defined as Γ=

j

Tj⇒ ∆j .

We have finished defined a sequence (Γi
Ti⇒ ∆i)i∈ω. We define Γ+ :=

⋃
i∈ω Γi,

T + :=
⋃
i∈ω Ti and ∆+ :=

⋃
i∈ω∆i. Then it is easy to see that Γ+ T

+

⇒ ∆+ is a
saturated sequent (we note that the rule (wlab) is needed here). ut

Lemma 2. Let Γ
T⇒ ∆ be a saturated and unprovable tree sequent in TEFL−.

Define the derived model M = (T , A, (Ra)a∈A, (�α)α∈T , V ) from Γ
T⇒ ∆ by:
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– A := { |n| | n is an agent nominal }, where |n| is an equivalence class of an
equivalence relation ∼ which is defined as: n ∼ m iff α : @nm ∈ Γ for some
α ∈ T .

– αR|n|β iff β is an m-child of α for some m ∈ |n|.
– |n| �α |m| iff α : @n〈F〉m ∈ Γ .
– (α, |n|) ∈ V (m) iff α : @nm ∈ Γ (m ∈ Nom).
– (α, |n|) ∈ V (p) iff α : @np ∈ Γ (p ∈ Prop).

Then, M is a model. Moreover, for every labelled formula α : @nϕ, we have:

(i) If α : @nϕ ∈ Γ then M, (α, |n|) |= ϕ;
(ii) If α : @nϕ ∈ ∆ then M, (α, |n|) 6|= ϕ.

Proof. First, let us check that M is a model. First of all, note that we can easily
verify that ∼ is an equivalence relation by the conditions (ref=), (repi) and
(rigid=) of Definition 1. We can also check that if n ∼ m then R|n| = R|m| and
that if n ∼ n′ and m ∼ m′ then α : @n〈F〉m ∈ Γ iff α : @n′〈F〉m′ ∈ Γ . So both
of R|n| and �α are well-defined. As for the valuation of propositional variables,
when n ∼ m holds, the equivalence between α : @np ∈ Γ and α : @mp ∈ Γ holds
by the saturation conditions (rep1) and (rep2). For the valuation for agent
nominals m, we need to check that { (α, |n|) |α : @nm ∈ Γ } is T × { |m| }. But
this is clear from the saturation condition (rigid=) and the fact that ∼ is an
equivalence relation.

Now we move to check items (i) and (ii) by induction on ϕ. We only check
the cases where ϕ is of the form: m, ⊥ or Fϕ or �ϕ, since the other cases are
easy to establish by the corresponding saturation conditions of Definition 1.

– Let ϕ be of the form m. For (i), suppose that α : @nm ∈ Γ . This means
that |n| = |m|. Since V (m) = T × { |m| }, we have M, (α, |n|) |= m, as
desired. For (ii), assume that α : @nm ∈ ∆ and suppose for contradiction
that M, (α, |n|) |= m, i.e., |n| = |m|. It follows from |n| = |m| and the
saturation condition (rigid=) that α : @nm ∈ Γ . This is a contradiction

with the unprovability of Γ
T⇒ ∆ in TEFL−. Therefore, we conclude that

M, (α, |n|) 6|= m.

– Let ϕ be of the form ⊥. Since Γ
T⇒ ∆ is unprovable in TEFL−, it is impos-

sible to have α : @n⊥ ∈ Γ , (i) trivially holds. Since M, (α, |n|) 6|= ⊥ always
holds, (ii) also holds.

– Let ϕ be of the form Fϕ. For (i), assume that α : @nFϕ ∈ Γ . We need to
show M, (α, |n|) |= Fϕ, so let us fix any agent nominal m such that |n|Rα|m|.
Our goal is to show M, (α, |m|) |= ϕ. From |n|Rα|m|, we get α : @n〈F〉m ∈ Γ
hence α : @n〈F〉m /∈ ∆ by the unprovability of Γ

T⇒ ∆. By the condition (Fl),
we obtain α : @mϕ ∈ Γ , which implies our goal by induction hypothesis.
For (ii), assume that α : @nFϕ ∈ ∆. By the saturation condition (Fr), we
have that α : @n〈F〉m ∈ Γ and α : @mϕ ∈ ∆ for some agent nominalm. With
the help of induction hypothesis, we have |n|Rα|m| and M, (α, |m|) 6|= ϕ for
some agent nominal m. Hence M, (α, |n|) 6|= Fϕ, as desired.
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– Let ϕ be of the form �ϕ. To show (i), assume that α : @n�ϕ ∈ Γ . We need
to show M, (α, |n|) |= �ϕ, so let us fix any label β such that αR|n|β. Our goal
is to show M, (β, |n|) |= ϕ. By αR|n|β, we can find an agent nominal m ∈ |n|
such that β is an m-child of α. It follows from m ∈ |n| that γ : @nm ∈ Γ for
some label γ. By α : @n�ϕ ∈ Γ and γ : @nm ∈ Γ , the saturation condition
(rep1) implies that α : @m�ϕ ∈ Γ . By the saturation condition (�l) and
the fact that β is an m-child of α, we obtain β : @mϕ ∈ Γ . By induction
hypothesis, M, (β, |m|) |= ϕ hence we obtain our goal by |m| = |n|. This
finishes to show (i).
For (ii), assume that α : @n�ϕ ∈ ∆. By the saturation condition (�r), we
have that β : @nϕ ∈ ∆ for some n-child β of α, i.e., αR|n|β. By induction
hypothesis, M, (β, |n|) 6|= ϕ. So we conclude that M, (α, |n|) 6|= �ϕ. ut

Theorem 2 (Completeness of cut-free TEFL−). If M, f |= Γ
T⇒ ∆ for all

models M and all assignments f , then Γ
T⇒ ∆ is provable in TEFL−.

Proof. Suppose for contradiction that Γ
T⇒ ∆ is unprovable in TEFL−. By

Lemma 1, we can extend this tree sequent into a saturated (possibly infinite) tree

sequent Γ+ T
+

⇒ ∆+ which is still unprovable in TEFL−. Let M be the derived

model from Γ+ T
+

⇒ ∆+. Let us define f : T → T as the identity mapping. Then
it follows from Lemma 2 that M, f 6|= Γ ⇒ ∆, as required. ut

By Theorems 1 and 2, the cut elimination theorem of TEFL follows.

Corollary 1. The following are all equivalent:

1. M, f |= Γ
T⇒ ∆ for all models M and all assignments f .

2. Γ
T⇒ ∆ is provable in TEFL−.

3. Γ
T⇒ ∆ is provable in TEFL.

Therefore, TEFL enjoys the cut-elimination theorem.

5 Hilbert System of Epistemic Logic of Friendship

This section provides a Hilbert system of the epistemic logic of friendship by
“translating” a tree sequent into a formula in L. First of all, let us introduce
the notion of necessity form, originally proposed in [13] by Goldblatt and used
also in [6,11]. Necessity forms are employed to formulate an inference rule of our
Hilbert system.

Definition 2 (Necessity form). Fix an arbitrary symbol # not occurring in
the syntax L. A necessity form is defined inductively as follows: (i) # is a ne-
cessity form; (ii) If L is a necessity form and ϕ is a formula, then ϕ → L is
also a necessity form; (iii) If L is a necessity form and n is an agent nominal,
then @n�L is also a necessity form. Given a necessity form L(#) and a formula
ϕ of L, we use L(ϕ) to denote the formula obtained by replacing the unique
occurrence of # in L by the formula ϕ.
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When L(#) is a necessity form of ψ0 → @n�(ψ1 → @m�(ψ2 → #)), then
L(ϕ) is ψ0 → @n�(ψ1 → @m�(ψ2 → ϕ)). Intuitively, this notion allows us to
capture the unique path from a label in a tree of a tree sequent to the root label
of the tree.

Table 2. Hilbert System HEFL

(Taut) all propositional tautologies (MP) From ϕ and ϕ→ ψ, infer ψ
(K�) �(ϕ→ ψ)→ (�ϕ→ �ψ) (Nec�) From ϕ, infer �ϕ
(KF) F(ϕ→ ψ)→ (Fϕ→ Fψ) (NecF) From ϕ, infer Fϕ
(K@) @n(ϕ→ ψ)→ (@nϕ→ @nψ) (Nec@) From ϕ, infer @nϕ
(Ref) @nn (Selfdual) ¬@nϕ↔ @n¬ϕ
(Elim) @nϕ→ (n→ ϕ) (Agree) @n@mϕ→ @mϕ
(Back) @nϕ→ F@nϕ (DCom@�) @n�@nϕ↔ @n�ϕ
(Rigid=) @nm→ �@nm (Rigid6=) ¬@nm→ �¬@nm
(Name) From n→ ϕ, infer ϕ, where n is fresh in ϕ.
(L(BG)) From L(@n〈F〉m→ @mϕ), infer L(@nFϕ), where m is fresh in L(@nFϕ).

Table 2 presents our Hilbert system HEFL. The underlying idea of the sys-
tem is the following. On the top of the propositional part (Taut and MP), we
combine the axiomatization of modal logic K for the modal operator � and the
axiomatization of a basic hybrid logic KH(@) (see [5,4]) for the modal operator
F, with some modification (we need to modify BG, the rule of bounded gener-
alization, with the help of necessity forms), and then we add three interaction
axioms: (Rigid=), (Rigid 6=), and (DCom@�). We note that the axiom (DCom@�)
is also used for axiomatizing the dependent product of two hybrid logics in [20].
Let us define the notion of provability in HEFL in as usual. We write `HEFL ϕ
to means that ϕ is provable in HEFL. 1 2

Proposition 2. Uniform substitutions are length-preserving admissible in HEFL,
i.e., if σ is a uniform substitution and ϕ has a derivation in HEFL whose length
is at most n, then ϕσ has a derivation in HEFL whose length is at most n.

Proposition 3. All the following are provable in HEFL.

1. @m@nϕ↔ @nϕ.
2. n→ (@nϕ↔ ϕ).
3. @nm→ (@nϕ↔ @mϕ).
4. @nm↔ @mn.
5. @n(ϕ→ ψ)↔ (@nϕ→ @nψ).

1 By (K)-rules and (Nec)-rules for operators �, F and @n, the replacement of equiva-
lence holds in HEFL.

2 Given a set Γ ∪{ϕ } of formulas, we say that ϕ is deducible in HEFL from Γ if there
exist finite formulas ψ1, . . ., ψn ∈ Γ such that (ψ1 ∧ · · · ∧ ψn) → ϕ is provable in
HEFL. Then it is easy to see that the deduction theorem holds in HEFL.
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6. @nm→ (ϕ[n/k]↔ ϕ[m/k]).

Proof. For the provability of item 1, it suffices to show the right-to-left direc-
tion, which is shown by (Agree) and (Selfdual). For the provability of item
2, it suffices to show n → (ϕ → @nϕ), whose provability is shown by the
contraposition of (Elim) and (Selfdual). Then items 3 to 5 are proved sim-
ilarly as given in [5, p.293, Lemma 2]. Finally, item 6 is proved by induction
on ϕ. Here we show the case where ϕ is of the form l ∈ Nom, �ψ and @lψ.
First, we consider the case where ϕ is of the form l ∈ Nom. When l 6≡ k,
there is nothing to prove, so we focus on the case where l ≡ k. It suffices to
show that `HEFL @nm → (n ↔ m), but this is clear from items 2 and 4.
Second, we move to the case where ϕ is of the form �ψ. By induction hypoth-
esis, we obtain `HEFL @nm → (ψ[n/k] ↔ ψ[m/k]). By (K�) and (Nec�), we
get `HEFL �@nm → (�(ψ[n/k]) ↔ �(ψ[m/k])). It follows from the axiom
(rigid=) that `HEFL @nm → ((�ψ)[n/k] ↔ (�ψ)[m/k])), as desired. Third,
we deal with the case where ϕ is of the form @lψ. When l ≡ k, we show that
`HEFL @nm → (@l(ψ[n/k]) ↔ @l(ψ[m/k])). This is easily obtained by induc-
tion hypothesis, (Nec@) and items 1 and 5. When l 6≡ k, it suffices to prove that
`HEFL @nm→ (@n(ψ[n/k])↔ @m(ψ[m/k])). By induction hypothesis, we have
`HEFL @nm→ ((ψ[n/k])↔ (ψ[m/k])). By (Nec@), we have

`HEFL @n@nm→ @n((ψ[n/k])↔ (ψ[m/k])).

By items 2 and 5,

`HEFL @nm→ (@n(ψ[n/k])↔ @n(ψ[m/k])).

By items 3 and 4,

`HEFL @nm→ (@n(ψ[m/k])↔ @m(ψ[m/k])).

This allows us to conclude `HEFL @nm→ (@n(ψ[n/k])↔ @m(ψ[m/k])). ut

The following translation is a key to specify our Hilbert system HEFL.

Definition 3 (Formulaic translation). Given a set Θ of labelled formulas

and a label α, we define Θα := {ϕ |α : ϕ ∈ Θ }. Let Γ
T⇒ ∆ be a tree sequent.

Then the formulaic translation of the sequent at α is defined inductively as:[[
Γ
T⇒ ∆

]]
α

:=
∧
Γα →

∨(
∆α,@n1�

[[
Γ
T⇒ ∆

]]
β1

, . . . ,@nk
�
[[
Γ
T⇒ ∆

]]
βk

)
,

where βi is an ni-child of α, βis enumerate all children of α,
∧
∅ := >, and

∨
∅

:= ⊥.

The formulaic translation of a tree sequent of Fig. 1 of Section 3 at the root
0 is

@nϕ→ (@mψ ∨@n�(> → @kθ) ∨@k�(@mρ→ ⊥)).
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Theorem 3. If a tree sequent Γ
T⇒ ∆ is provable in TEFL then the formulaic

translation [[Γ
T⇒ ∆]]i is provable in HEFL, where a natural number i is the root

of T .

Proof. By induction on height n of a derivation of Γ
T⇒ ∆ in TEFL, where i

is the root of the tree T . We skip the base case where n = 0. Let n > 0. It is
remarked that, when the sequent is obtained by (repl), (ref=), (@L), or (@R),
respectively, the translation of the sequent at the root is provable by Proposition
3 (6), the axiom (Ref), (Agree), or Proposition 3 (1), respectively. Here we focus

on the cases where Γ
T⇒ ∆ is obtained by (�L), (FR) or (rigid=), since these are

the cases where we need to be careful and the other cases are easy to establish.

(�L) Suppose that α : @n�ϕ, Γ ′
T⇒ ∆ is obtained by (�L) from β : @nϕ, Γ

′ T⇒
∆, where β ∈ T is an n-child of α. By induction hypothesis, we obtain

`HEFL

[[
β : @nϕ, Γ

′ T⇒ ∆
]]
i
. We show that `HEFL

[[
α : @n�ϕ, Γ ′

T⇒ ∆
]]
i
.

Let (α0, α1, . . . , αl) be the unique path from α (≡ αl) to the root i (≡ α0)
of tree T . By induction on 0 6 h 6 l, we show that

`HEFL

[[
β : @nϕ, Γ

′ T⇒ ∆
]]
αl−h

→
[[
α : @n�ϕ, Γ

′ T⇒ ∆
]]
αl−h

.

Let h = 0 and so αl−h = α. It suffices to show that a formula of the form

(γ1 → (δ ∨@n�((γ2 ∧@nϕ)→ ψ2))→ ((@n�ϕ ∧ γ1)→ (δ ∨@n�(γ2 → ψ2))) .

is provable in HEFL. This reduces to the provability of

@n�ϕ ∧@n�((γ2 ∧@nϕ)→ ψ2))→ @n�(γ2 → ψ2))

in HEFL. This holds by the axiom (Dcom�@) @n�@nϕ↔ @n�ϕ.
Let h > 0. But this case is shown with the help of (Nec�) and (Nec@). This

completes our induction on h. So we conclude `HEFL

[[
α : @n�ϕ, Γ ′

T⇒ ∆
]]
i
.

(FR) Suppose that Γ
T⇒ ∆′, α : @nFϕ is obtained by (FR) from α : @n〈F〉m,Γ

T⇒
∆′, α : @mϕ where m is fresh in the conclusion. By induction hypothe-

sis, we have `HEFL

[[
α : @n〈F〉m,Γ

T⇒ ∆′, α : @mϕ
]]
i
, which is equivalent

to `HEFL L(@n〈F〉m → @mϕ) for some necessitation form L. Fix such ne-
cessitation form L. By the inference rule L(BG) of HEFL, we can obtain

`HEFL L(@nFϕ), which is equivalent to `HEFL

[[
Γ
T⇒ ∆′, α : @nFϕ

]]
i
.

(rigid=) Let us suppose that α : @nm,Γ
T⇒ ∆ is obtained by (rigid=) from β :

@nm,Γ
T⇒ ∆. By induction hypothesis, we obtain `HEFL

[[
β : @nm,Γ

T⇒ ∆
]]
i
.

Our goal is to show that `HEFL

[[
α : @nm,Γ

T⇒ ∆
]]
i
. It suffices to show

the following two cases: (i) β is a k-child of α or (ii) α is a k-child of
β. We note that we will use the axioms (Rigid=) in (i) and (Rigid 6=) in
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(ii). First, we deal with the case (i). Let (α0, α1, . . . , αl) be the unique
path from α (≡ αl) to the root i (≡ α0) of tree T . Recall that we as-
sume that β is a k-child of α. By induction on 0 6 h 6 l, we show that

`HEFL

[[
β : @nm,Γ

T⇒ ∆
]]
αl−h

→
[[
α : @nm,Γ

T⇒ ∆
]]
αl−h

. Let h = 0 and

so αl−h = α. It suffices to show that a formula of the form:

(γα → (δα∨@k�((@nm∧γβ)→ δβ)))→ ((γα∧@nm)→ (δα∨@k�(γβ → δβ)))

is provable in HEFL. For this, it suffices to show `HEFL @nm→ @k�@nm,
which holds by (Rigid=), the distribution of @ over the implication and
Proposition 3 (1). Let h > 0. But this case is shown with the help of (Nec�)
and (Nec@). This completes our induction on h. So we conclude `HEFL[[
α : @nm,Γ

T⇒ ∆
]]
i
. Second, we move to the case (ii). Let (β0, β1, . . . , βl)

be the unique path from β (≡ βl) to the root i (≡ β0) of tree T . Note that
we assume that α is a k-child of β. By induction on 0 6 h 6 l, we show that

`HEFL

[[
β : @nm,Γ

T⇒ ∆
]]
βl−h

→
[[
α : @nm,Γ

T⇒ ∆
]]
βl−h

. Let h = 0 and so

βl−h = β. It suffices to show that a formula of the form:

((γβ∧@nm)→ (δβ∨@k�(γα → δα)))→ (γβ → (δβ∨@k�((@nm∧γα)→ δα)))

is provable in HEFL. For this, it suffices to show `HEFL ¬@nm→ @k�¬@nm,
which holds by (Rigid 6=), (Selfdual) and Proposition 3 (1). Let h > 0. But
this case is shown with the help of (Nec�) and (Nec@). This completes our

induction on h. So we conclude `HEFL

[[
α : @nm,Γ

T⇒ ∆
]]
i
. ut

In what follows in this section, we prove the soundness of HEFL for the tree
sequent calculus TEFL with the cut rule. The cut rule is necessary to prove the
following.

Lemma 3. The rules (→ R), (�R), (@R), and (@L) are invertible, i.e., if the
lower sequent is provable in TEFL then the upper sequent is also provable in
TEFL.

Proof. We only prove the invertibility of (→ R) and (�R). First we deal with

(→ R). Suppose that Γ
T⇒ ∆,α : @n(ϕ → ψ) is provable in TEFL. This is

shown as follows:

Γ
T⇒ ∆,α : @n(ϕ→ ψ) α : @n(ϕ→ ψ), α : @nϕ

T⇒ α : @nψ

α : @nϕ, Γ
T⇒ ∆,α : @nψ

(Cut)
,

where the rightmost tree sequent is provable in TEFL by (→ L). Second we

move to (�R). Suppose that Γ
T⇒ ∆,α : @n�ϕ is provable in TEFL. Then the
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provability of the upper sequent of (�R) is established as follows:

Γ
T⇒ ∆,α : @n�ϕ

Γ
T ∪{α·ni }⇒ ∆,α : @n�ϕ

(wlab)
α ·n i : @nϕ, Γ

T ∪{α·ni }⇒ ∆,α ·n i : @nϕ
(id)

α : @n�ϕ, Γ
T ∪{α·ni }⇒ ∆,α ·n i : @nϕ

(L�)

Γ
T ∪{α·ni }⇒ ∆,α ·n i : @nϕ

(Cut)
.

ut

Theorem 4. If ϕ is provable in HEFL, then
T⇒ α : @nϕ is provable in TEFL

for all trees T , α ∈ T and nominals n.

Proof. Suppose that there is a derivation (ϕ0, . . . , ϕh) of ϕ in HEFL. By in-

duction on 0 6 j 6 h, we show that
T⇒ α : @nϕj is provable in TEFL for all

nominals n. We demonstrate some cases. Let us start with (Rigid=), which is
shown as follows.

α ·k i : @nm
T ∪{α·ki }⇒ α ·k i : @nm

(id)

α : @nm
T ∪{α·ki }⇒ α ·k i : @nm

(rigid=)

α : @nm
T ∪{α·ki }⇒ α ·k i : @k@nm

(@R)

α : @nm
T⇒ α : @k�@nm

(�R)

α : @k@nm
T⇒ α : @k�@nm

(@L)

T⇒ α : @k(@nm→ �@nm)
(→ R)

For (Rigid 6=), the following derivation is enough for our goal:

α : @nm
T ∪{α·ki }⇒ α : @nm

(id)

α ·k i : @nm
T ∪{α·ki }⇒ α : @nm

(rigid=)

α ·k i : @k@nm
T ∪{α·ki }⇒ α : @nm

(@L)

α ·k i : @k@nm
T ∪{α·ki }⇒ α : @k@nm

(@R)

α ·k i : @k@nm,α : @k¬@nm
T ∪{α·ki }⇒

(¬L)

α : @k¬@nm
T ∪{α·ki }⇒ α ·k i : @k¬@nm

(¬R)

α : @k¬@nm
T⇒ α : @k�¬@nm

(�R)

T⇒ α : @k(¬@nm→ �¬@nm)
(→ R)

.

Now we move to (DCom@�). We show the right-to-left direction alone, since the
converse direction is shown similarly. Let us see the derivation below, from which
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we can obtain the provability of
T⇒ α : @m(@n�@np→ @n�p) in TEFL:

α ·n i : @np
T ∪{α·ni }⇒ α ·n i : @np

(id)

α ·n i : @n@np
T ∪{α·ni }⇒ α ·n i : @np

(@L)

α : @n�@np
T ∪{α·ni }⇒ α : ·ni : @np

(�L)

α : @n�@np
T⇒ α : @n�p

(�R)

Now we deal with some inference rules below.

(Name) Let ϕj ≡ n → ψ be obtained by (Name). Fix any finite tree T , α ∈ T and
nominal k. Let m 6≡ k be a fresh nominal in T and ψ. Note that m is also
fresh in α ∈ T . By Proposition 2, m→ ψ has a derivation whose length is at

most j. By induction hypothesis,
T⇒ α : @k(m → ψ) is provable in TEFL.

By admissibility of uniform substitution [k/m] in TEFL (by Proposition

1),
T⇒ α : @k(k → ψ) is provable in TEFL. By Lemma 3, we obtain the

provability of α : @kk
T⇒ α : @kψ in TEFL. By (ref=), we conclude that

T⇒ α : @kψ is provable in TEFL.
(L(BG)) Let ϕj ≡ �ψ be obtained by (L(BG)). Fix any finite tree T , α ∈ T and

nominal k. By induction hypothesis,
T⇒ α : @kL(@n〈F〉m → @mϕ) is prov-

able in TEFL, where we can assume that m satisfies the freshness condition
by Proposition 2. By applying Lemma 3 (i.e., the invertibility of the right
rules) repeatedly to the consequent of a resulting tree sequent, we obtain the

provability of a tree sequent of the form Γ, β : @n〈F〉m
T ′⇒ ∆,β : @mϕ. Then

we apply the right rules in a converse direction of our repeated application

of Lemma 3 to conclude that
T⇒ α : @kL(@nFϕ) is provable in TEFL. To

illustrate this argument, let L ≡ @n�(ψ → #). By induction hypothesis,
T⇒ α : @k@n�(ψ → (@n〈F〉m → @mϕ)) is provable in TEFL, where recall
that m satisfies the freshness condition. By applying Lemma 3 repeatedly,

we obtain the provability of α·n i : @nψ, α·n i : @n〈F〉m
T ∪{α·ni }⇒ α·n i : @mϕ

in TEFL for some fresh label α ·n i. Then we proceed as follows:

α ·n i : @nψ, α ·n i : @n〈F〉m
T ∪{α·ni }⇒ α ·n i : @mϕ

α ·n i : @nψ
T ∪{α·ni }⇒ α ·n i : @nFϕ

(FR)

α ·n i : @nψ
T ∪{α·ni }⇒ α ·n i : @n@nFϕ

(@R)

T ∪{α·ni }⇒ α ·n i : @n(ψ → @nFϕ)
(→ R)

T⇒ α : @n�(ψ → @nFϕ)
(�R)

T⇒ α : @k@n�(ψ → @nFϕ)
(@R)

,

as required.
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(Nec@) Let ϕj ≡ @nψ be obtained by (Name). Fix any finite tree T , α ∈ T and

nominal k. We show that
T⇒ α : @k@nψ is provable in TEFL. By the rule

(@R), it suffices to establish the provability of
T⇒ α : @nψ in TEFL. This is

immediate from induction hypothesis.
(Nec�) Let ϕj ≡ �ψ be obtained by (Nec�). Fix any finite tree T , α ∈ T and

nominal n. By induction hypothesis,
T ∪{α·ni }⇒ α ·n i : @nψ is provable in

TEFL, where α ·n i is fresh in T . By the rule (�R) of TEFL, the provability

of
T⇒ α : @n�ψ follows, as desired.

(NecF) Let ϕj ≡ Fψ be obtained by (NecF). Fix any finite tree T , α ∈ T and nominal

n. Let m be a fresh nominal in ψ. By induction hypothesis,
T⇒ α : @mψ is

provable in TEFL. By the admissibility of weakening rule from Proposition

1, we obtain the provability of α : @n〈F〉m
T⇒ α : @mψ. Since m is fresh

in ψ, the rule (FR) enables us to derive the provability of
T⇒ α : @nFψ in

TEFL, as desired. ut

Corollary 2 (Soudness and Completenss of HEFL). The following are all
equivalent: for every formula ϕ,

1. ϕ is valid in the class of all models, 3

2.
T⇒ α : @nϕ is provable in TEFL− for all T , α ∈ T and nominals n,

3.
T⇒ α : @nϕ is provable in TEFL for all T , α ∈ T and nominals n,

4. ϕ is provable in HEFL.

Proof. Item 1 is equivalent to the following:
T⇒ α : @nϕ is true for all pairs

(M, f) of models and assignments, finite trees T , α ∈ T and nominals n. Then
the equivalence between items 1, 2 and 3 holds by Corollary 1. The direction
from item 4 to item 3 holds by Theorem 4. Finally, the direction from item 3 to
item 4 is established as follows. Suppose item 3. Let n be a fresh nominal. By

the supposition,
{ 0 }⇒ 0 : @nϕ is provable in TEFL. It follows from Theorem 3

that `HEFL [[
{ 0 }⇒ 0 : @nϕ]]0, which implies `HEFL @nϕ. By the axiom (Elim),

we obtain `HEFL n→ ϕ hence `HEFL ϕ by (Name), as required. ut

6 Extensions of Epistemic Logic of Friendship

This section explains how we extend our tree sequent calculus TEFL and Hilbert
system HEFL. In particular, we discuss extensions where � follows S4 or S5
axioms and/or the friendship relation �w satisfies some universal properties such
as irreflexivity, symmetry, etc. (w ∈ W ). We note that [23,24] assume that the
friendship relation �w satisfies irreflexivity and symmetry and that � obeys S5
axioms. Let us introduce the following sets of additional axioms:

– KT := {�ϕ→ ϕ |ϕ ∈ Form }.
3 We do not need to assume that each of our models is named in the sense that each

agent is named by an agent nominal in this statement.
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– S4 := KT ∪ {�ϕ→ ��ϕ |ϕ ∈ Form }.
– S5 := S4 ∪ {ϕ→ �¬�¬ϕ |ϕ ∈ Form }.

Let us consider formulas of the form @nm or @n〈F〉m, which are denoted by ρi,
ρ′i, etc. below. Let us consider a formula ϕ of the following form:

(ρ1 ∧ · · · ∧ ρh)→ (ρ′1 ∨ · · · ∨ ρ′l),

where we note that h and l are possibly zero. We say that a formula of such
form is a regular implication [17, Sec. 6] (we may even consider a more general
class of formulas called geometric formulas (cf. [8]), but we restrict our attention
to regular implications in this paper for simplicity). The corresponding frame
property of a regular implication is obtained by regarding @nm or @n〈F〉m by
“an = am” and “an �w am” and putting the universal quantifiers for all agents
and w. For example, irreflexivity and symmetry of �w are defined by

– irr� := @n〈F〉n→ ⊥
– sym� := @n〈F〉m→ @m〈F〉n,

respectively.
Now let us move to tree sequent systems. First, we introduce an inference

rule for a regular implication. For a regular implication ϕ displayed above, we
can define the corresponding inference rule (ri(ϕ)) for tree sequent calculus as
follows (cf. [8], [17, Sec. 6]):

α : ρ′1, Γ
T⇒ ∆ · · · α : ρ′l, Γ

T⇒ ∆

α : ρ1, . . . , α : ρh, Γ
T⇒ ∆

(ri(ϕ))

When l = 0, the rule ri(ϕ) is a zero premise rule of the following form:

α : ρ1, . . . , α : ρh, Γ
T⇒ ∆

(ri(ϕ))

When �w is irreflexive or symmetric for all w ∈W , we can obtain the following
rule (irr�) or (sym�), respectively:

α : @n〈F〉n, Γ
T⇒ ∆

(ri(irr�))
α : @m〈F〉n, Γ

T⇒ ∆

α : @n〈F〉m,Γ
T⇒ ∆

(ri(sym�))
.

Let Λ be one of KT, S4 and S5 and Θ be a possibly empty finite set of reg-
ular implication schemes. In what follows, we define the tree sequent system
TEFL(Λ;Θ). Recall that the side condition ‡ of the rule (�L) of Table 1. First,
depending on the choice of Λ, we change the side condition ‡ of the rule (�L)
in TEFL into the following one:

– ‡KT: α �n β, where �n is the reflexive closure of the n-children relation.
– ‡S4: α �∗n β, where �∗n is the reflexive transitive closure of the n-children

relation.
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– ‡S5: α ∼n β, where ∼n is the reflexive, symmetric, transitive closure of the
n-children relation.

When Λ is one of KT, S4 and S5, we use “Λ” as a subscript of the rule (�L)
as in:

β : @nϕ, Γ
T⇒ ∆

α : @n�ϕ, Γ
T⇒ ∆

(�LΛ)

to indicate which side condition is considered. Second, we extend the resulting
system with a finite set { (ri(ϕ)) |ϕ ∈ Θ } of inference rules, defined above, to
finish to define the system TEFL(Λ;Θ). We define TEFL(Λ;Θ)− as the system
TEFL(Λ;Θ) without the cut rule.

Definition 4. Given a set Ψ of formulas and a frame F = (W,A, (Ra)a∈A, (�w
)w∈W ) (a model without a valuation), we say that Ψ is valid in F (notation: F |=
Ψ) if (F, V ), (w, a) |= ψ for all ψ ∈ Ψ , valuations V and pairs (w, a) ∈ W × A.
We define a class MΨ of models as { (F, V ) |F |= Ψ }.

Theorem 5. Let Λ be one of KT, S4 and S5, and let Θ be a possibly empty
finite set of regular implications. The following are all equivalent:

1. M, f |= Γ
T⇒ ∆ for all models M ∈MΛ∪Θ and all assignments f .

2. Γ
T⇒ ∆ is provable in TEFL(Λ;Θ)−.

3. Γ
T⇒ ∆ is provable in TEFL(Λ;Θ).

Therefore, TEFL(Λ;Θ) enjoys the cut-elimination theorem.

Proof. The direction from item 2 to item 3 is trivial and it is not difficult to es-
tablish the direction from from item 3 to item 1 (soundness result of TEFL(Λ;Θ)
for the semantics). So we focus on showing the direction from item 1 to item 2
here. An outline of our proof is almost the same as in Lemma 1 and Lemma 2.
First we introduce the notion of saturation of a possibly infinite tree squent as
follows. As for ϕ ≡ (ρ1 ∧ · · · ∧ ρh) → (ρ′1 ∨ · · · ∨ ρ′l) ∈ Θ, we add the following
saturation condition:

(ri(ϕ)) If α : ρ1, . . . , α : ρh ∈ Γ then α : ρ′j ∈ Γ for some 1 6 j 6 l.

where the rule (ri(ϕ)) in the tree sequent calculus is not a zero premise rule.
Depending on our choice of Λ, we change the condition (�l) as follows:

(�lKT) If α : @n�ϕ ∈ Γ then β : @nϕ ∈ Γ for all β such that α �n β,
(�lS4) If α : @n�ϕ ∈ Γ then β : @nϕ ∈ Γ for all β such that α �∗n β,
(�lS5) If α : @n�ϕ ∈ Γ then β : @nϕ ∈ Γ for all β such that α ∼n β.

Now we prove the corresponding saturation lemma to Lemma 1.
Our proof is almost the same as in the proof of Lemma 1. So we explain

differences. For (Step 1) of the inductive step of the proof of Lemma 1, we
modify our construction as follows. Before constructing Γ rep

j , we construct ΓΘj
from Γj as follows. We enumeate all the tuples in Γj of the form (α : ρ1, . . . , α :
ρn) for some ϕ ≡ (ρ1 ∧ · · · ∧ ρh)→ (ρ′1 ∨ · · · ∨ ρ′l) ∈ Θ (we note that the number
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of such tuples is finite). With the help of such enumeration (let t be the number

of such tuples), we inductively construct (Γ
(k)
j )06k6t such that Γ

(k)
j ⊆ Γ (k+1)

j as

follows. Define Γ
(0)
j = Γj . Suppose that we have constructed Γ

(0)
j ⊆ · · · ⊆ Γ (k)

j .
Let k-th tuple of the enumeration be (α : ρ1, . . . , α : ρn) and the corresponding
regular implication ϕ is (ρ1 ∧ · · · ∧ ρh)→ (ρ′1 ∨ · · · ∨ ρ′l). We can find some index

f such that α : ρ′f , Γ
(k)
j

T⇒ ∆ is unprovable in TEFL(Λ;Θ)− by the rule (ri(ϕ)).

Then we define Γ
(k+1)
j as α : ρ′f , Γ

(k)
j . Finally we define ΓΘj :=

⋃
16k6t Γ

(k)
j .

Then we do the same construction as in Step 1 for ΓΘj instead of Γj . For Step
2, there is no substantial change. This finishes to establish the corresponding
saturation lemma to Lemma 1.

Next we comment on the corresponding lemma to Lemma 2. Let Γ
T⇒ ∆ be a

saturated and unprovable tree sequent in TEFL(Λ;Θ)−. As in the statement of
Lemma 2, we define the derived model M in the same way exceptR|n|. Depending
on our choice of Λ, we define R|n| as follows:

(KT) αR|n|β iff α �m β for some m ∈ |n|.
(S4) αR|n|β iff α �∗m β for some m ∈ |n|.
(S5) αR|n|β iff α ∼m β for some m ∈ |n|.

Then it is easy to see R|n| satisfies the corresponding properties of Λ, i.e., R|n| is
reflexive when Λ is KT, R|n| is a pre-order when Λ is S4, R|n| is an equivalence
relation when Λ is S5. The remaining argument is the same as in the proof
of Lemma 2. Moreover, it follows from the saturation condition ri(ϕ) and the

unprovability of Γ
T⇒ ∆ in TEFL(Λ;Θ)− that the corresponding properties of

Θ are satisfied. This enables us to conclude the derived model M belongs to
MΛ∪Θ. This finishes showing the direction from item 1 to item 2. ut

Definition 5. When Λ is one of KT, S4 and S5 and Θ is a finite set of regular
implications, a Hilbert system HEFL(Λ∪Θ) is defined as the axiomatic extension
of HEFL by new axioms Λ ∪Θ.

Theorem 6. Let Λ be one of KT, S4 and S5, and let Θ be a possibly empty
finite set of regular implications. The following are all equivalent: for every for-
mula ϕ,

1. ϕ is valid in MΛ∪Θ.

2.
T⇒ α : @nϕ is provable in TEFL(Λ∪Θ)− for all T , α ∈ T and nominals n,

3.
T⇒ α : @nϕ is provable in TEFL(Λ ∪Θ) for all T , α ∈ T and nominals n,

4. ϕ is provable in HEFL(Λ ∪Θ).

Proof. By Theorem 5, we can establish the equivalence between items 1, 2 and
3. We are going to provide our argument for a direction from item 4 to item 3
and a direction from item 3 to item 4.

From item 4 to item 3, we prove a similar statement to Theorem 4. But it
suffices to prove the additional axioms from Λ∪Θ are provable in TEFL(Λ∪Θ).
In what folows, let us fix any tree T , α ∈ T and nominal n. First of all, let



Axiomatizing Epistemic Logic of Friendship via Tree Sequent Calculus 21

ψ ≡ (ρ1 ∧ · · · ∧ ρh) → (ρ′1 ∨ · · · ∨ ρ′l) ∈ Θ. We show
T⇒ α : @nψ is provable in

TEFL(Λ ∪Θ). The crucial part of this derivation is the following:

α : ρ′1
T⇒ α : ρ′1, . . . , α : ρ′l

(id)
· · · α : ρ′l

T⇒ α : ρ′1, . . . , α : ρ′l

(id)

α : ρ1, . . . , α : ρh
T⇒ α : ρ′1, . . . , α : ρ′l

(ri(ϕ))
.

Let us move to Λ. When Λ is KT, it suffices to give the following derivation:

α : @nϕ
T⇒ α : @nϕ

(id)

α : @n�ϕ
T⇒ α : @nϕ

(�LKT)
.

When Λ is K4, it suffices to give the following:

α ·n i ·n j : @nϕ
T ∪{α·ni,α·ni·nj }⇒ α ·n i ·n j : @nϕ

(id)

α : @n�ϕ
T ∪{α·ni,α·ni·nj }⇒ α ·n i ·n j : @nϕ

(�LS4)

α : @n�ϕ
T ∪{α·ni }⇒ α ·n i : @n�ϕ

(�R)

α : @n�ϕ
T⇒ α : @n��ϕ

(�R)
.

Finally, if Λ is S5, on the top of the above two derivation, it suffices to consider
the following derivation:

α : @nϕ
T ∪{α·ni }⇒ α : @nϕ

(id)

α : @n¬ϕ, α : @nϕ
T ∪{α·ni }⇒

(¬L)

α ·n i : @n�¬ϕ, α : @nϕ
T ∪{α·ni }⇒

(�LS5)

α : @nϕ
T ∪{α·ni }⇒ α ·n i : @n¬�¬ϕ

(¬R)

α : @nϕ
T⇒ α : @n�¬�¬ϕ

(�R)
.

For the direction from item 3 to item 4, it suffices to establish the formulaic
translation of the rules (ri(ϕ)) for all ϕ ∈ Θ, (�LKT), (�LS4) and (�LS5) at the
root node preserves the provability in the corresponding system HEFL(Λ ∪Θ).
Since the case of (ri(ϕ)) is not so difficult for every ϕ ∈ Θ, we focus on all the
other rules. All the other rules have the following form:

β : @nϕ, Γ
T⇒ ∆

α : @n�ϕ, Γ
T⇒ ∆

(�LΛ)

Let us suppose that i be the root node of T . Let (α0, . . . , αl) be the unique path
from the α (≡ αl) to the root node i (≡ α0). Similarly as in the proof of the
case of the rule (�L) in Theorem 3, by induction on h, that:

`HEFL(Λ∪Θ) [[β : @nϕ, Γ
T⇒ ∆]]αl−h

→ [[α : @n�ϕ, Γ
T⇒ ∆]]αl−h

,
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where we often omit the subscript of `HEFL(Λ∪Θ) to simply write ` below when
no confusion arises. When Λ is KT, it suffice to check an application of (�LKT)
where β is α itself. We only establish the base case where h = 0. That is, we
establish

`HEFL(KT∪Θ) [[α : @nϕ, Γ
T⇒ ∆]]α → [[α : @n�ϕ, Γ

T⇒ ∆]]α,

To show this, it suffice to show the following:

`HEFL(KT∪Θ) ((γ ∧@nϕ)→ δ)→ ((γ ∧@n�ϕ)→ δ),

which is easily obtained by `HEFL(KT∪Θ) �ϕ→ ϕ, (Nec@) and (K@).
Let us move to the case where Λ is S4. In this case, we suffice to check an

application of (�LS4) where β is a grand n-child of α, i.e., β is an n-child of α′

and α′ is an n-child of α′ for some label α′ ∈ T . To show the base case where h
= 0, it suffice to prove the following:

`HEFL(S4∪Θ) (γα → (δα ∨@n(γα′ → (δα′ ∨@n�((@nϕ ∧ γβ)→ δβ)))))

→ ((@n�ϕ ∧ γα)→ (δα ∨@n(γα′ → (δα′ ∨@n�(γβ → δβ))))) ,

which is provable by `HEFL(S4∪Θ) �ϕ→ ��ϕ, (Nec@) and (K@).
Finally, if Λ is S5, we suffice to check an application of (�LS5) where β is

an n-parent of α, i.e., α is an n-child of β. In this case, our base case is h = 1,
i.e., we show the preservation of the provability of the formulaic translation at
β:

`HEFL(S5∪Θ) [[β : @nϕ, Γ
T⇒ ∆]]β → [[α : @n�ϕ, Γ

T⇒ ∆]]β .

To show it, it suffices to establish the following:

`HEFL(S5∪Θ) ((@nϕ ∧ γβ)→ (δβ ∨@n�(γα → δα)))

→ (γβ → (δβ ∨@n�((@n�ϕ ∧ γα)→ δα))) .

Since this is equivalent with:

`HEFL(S5∪Θ) (γβ → (¬@nϕ ∨ δβ ∨@n�(γα → δα)))

→ (γβ → (δβ ∨@n�((@n�ϕ ∧ γα)→ δα))) ,

we need to establish:

`HEFL(S5∪Θ) @n¬ϕ→ @n�@n¬�ϕ

by ` ¬@nψ ↔ @n¬ψ. With the help of the axiom (DCom@�), (Nec@) and (K@),
the provability above is reduced to `HEFL(S5∪Θ) ¬ϕ → �¬�ϕ, which is easily
obtained from the axiom scheme ψ → �¬�¬ψ. ut

Recall that [23,24] assume that the friendship relation �w satisfies irreflexivity
and symmetry and that � obeys S5 axioms. As a corollary of Theorem 6, the
following provides a complete axiomatization of the logic studied in [23,24], where
irr� is @n〈F〉n→ ⊥ and sym� is @n〈F〉m→ @m〈F〉n.
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Corollary 3. The following are all equivalent: for every formula ϕ,

1. ϕ is valid in MS5∪{ irr�,sym� }.

2.
T⇒ α : @nϕ is provable in TEFL(S5 ∪ { irr�, sym� })− for all finite tree T ,
α ∈ T and nominals n,

3.
T⇒ α : @nϕ is provable in TEFL(S5 ∪ { irr�, sym� }) for all finite tree T ,
α ∈ T and nominals n,

4. ϕ is provable in HEFL(S5 ∪ { irr�, sym� }).

7 Further Directions

This paper positively answered the question if the set of all valid formulas of
EFL in the class of all models is axiomatizable. We list some directions for
further research.

1. Is HEFL or TEFL decidable?
2. Is it possible to provide a syntactic proof of the cut elimination theorem of

TEFL?
3. Can we reformulate our sequent calculus into a G3-style calculus, i.e., a

contraction-free calculus, all of whose rules are height-preserving invertible?
4. Provide a G3-style labelled sequent calculus for EFL based on the idea of

doubly labelled formula (x, y) : ϕ. This is an extension of G3-style labelled
sequent calculus for modal logic in [18,16].

5. Prove the semantic completeness of HEFL and its extensions by specifying
the notion of canonical model.

6. Can we apply our technique of this paper to obtain a Hilbert system of Term
Modal Logics which is proposed in [10]? 4
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lardi T. Bolander, T Braüner and L. S. Moss, editors, Advances in Modal Logics,
volume 9, pages 239–260. College Publications, 2012.

13. R. Goldblatt. Axiomatizing the logic of computer programming, volume 130 of
Lecture Notes in Computer Science. Springer-Verlag, 1982.

14. J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two No-
tions. Cornell University Press, Cornell, 1962.

15. R. Kashima. Cut-free sequent calculi for some tense logics. Studia Logica, 53:119–
135, 1994.

16. S. Negri. Proof analysis in modal logic. Journal of Philosophical Logic, 34:507544,
2005.

17. S Negri and J. Von Plato. Structural Proof Theory. Cambridge University Press,
2001.

18. S. Negri and J. Von Plato. Proof Analysis. Cambridge University Press, 2011.
19. J. A. Plaza. Logics of public communications. In M. L. Emrich, M. S. Pfeifer,

M Hadzikadic, and Z. W. Ras, editors, Proceedings of the 4th International Sym-
posium on Methodologies for Intelligent Systems, pages 201–216, 1989.

20. K. Sano. Axiomatizing hybrid products: How can we reason many-dimensionally
in hybrid logic? Journal of Applied Logic, 8(4):459–474, December 2010.

21. J. Seligman. Internalization: The case of hybrid logics. Journal of Logic and
Computation, 11(5):671–689, 2001.

22. J. Seligman, F. Liu, and P. Girard. Logic in the community. In Proceedings of the
4th Indian Conference on Logic and its Applications, volume 6521 of Lecture Notes
in Computer Science, pages 178–188, 2011.

23. J. Seligman, F. Liu, and P. Girard. Facebook and the epistemic logic of friendship.
In Proceedings of the 14th Conference on Theoretical Aspects of Rationality and
Knowledge (TARK 2013), Chennai, India, January 7-9, 2013, pages 230–238, 2013.

24. J. Seligman, F. Liu, and P. Girard. Knowledge, friendship and social announce-
ment. In Johan van Benthem and Fenrong Liu, editors, Logic Across the Univer-
sity: Foundations and Applications, volume 47 of Studies in Logic, pages 445–469.
College Publications, 2013.


	Lecture Notes in Computer Science

