Abstract
Belief revision has been studied for more than 30 years, and the theoretical properties of the belief revision operators are now well-known. Contrastingly, there are almost no practical applications of these operators. One of the reasons is the computational complexity of the corresponding inference problem, which is typically NP-hard and coNP-hard. Especially, existing implementations of belief revision operators are capable to solve toy instances, but are still unable to cope with real-size problem instances. However, the improvements achieved by SAT solvers for the past few years have been very impressive and they allow to tackle the solving of instances of inference problems located beyond NP. In this paper we describe and evaluate SAT encodings for a large family of distance-based belief revision operators. The results obtained pave the way for the practical use of belief revision operators in large-scale applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symb. Logic 50(2), 510–530 (1985)
Cadoli, M., Donini, F., Liberatore, P., Schaerf, M.: The size of a revised knowledge base. Artif. Intell. 115(1), 25–64 (1999)
Dalal, M.: Investigations into a theory of knowledge base revision. In: Proceedings of the Seventh AAAI Conference on Artificial Intelligence (AAAI 1988), pp. 475–479 (1988)
Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39071-5_13
Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40627-0_21
Delgrande, J.P., Schaub, T.: A consistency-based framework for merging knowledge bases. J. Appl. Logic 5(3), 459–477 (2007)
Delgrande, J.P., Liu, D.H., Schaub, T., Thiele, S.: COBA 2.0: a consistency-based belief change system. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 78–90. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75256-1_10
Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates, and counterfactuals. Artif. Intell. 57(2–3), 227–270 (1992)
Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change. Artif. Intell. 52(3), 263–294 (1991)
Konieczny, S., Lagniez, J.M., Marquis, P.: SAT encodings for distance-based belief merging operators. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI 2017), pp. 1163–1169 (2017)
Lafage, C., Lang, J.: Propositional distances and preference representation. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 48–59. Springer, Heidelberg (2001). doi:10.1007/3-540-44652-4_6
Liberatore, P.: Compilation of intractable problems and its application to artificial intelligence. Ph.D. thesis, Università di Roma “La Sapienza” (1998)
Lundberg, R.U., Ribeiro, M.M., Wassermann, R.: A Framework for empirical evaluation of belief change operators. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez-Lugo, G.A., Castilho, M. (eds.) SBIA 2012. LNCS, pp. 12–21. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34459-6_2
Nebel, B.: How hard is it to revise a belief base? In: Dubois, D., Prade, H. (eds.) Belief Change. Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 3, pp. 77–145. Kluwer Academic, Netherlands (1998)
Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)
Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. Technical report, Symbolic Computation Group, University of Tübingen (2005)
Tseitin, G.: Structures in constructive mathematics and mathematical logic. In: On the Complexity of Derivation in Propositional Calculus, pp. 115–125. Steklov Mathematical Institute (1968)
Williams, M.A., Sims, A.: Saten: an object-oriented web-based revision and extraction engine. CoRR cs.AI/0003059 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer-Verlag GmbH Germany
About this paper
Cite this paper
Konieczny, S., Lagniez, JM., Marquis, P. (2017). Boosting Distance-Based Revision Using SAT Encodings. In: Baltag, A., Seligman, J., Yamada, T. (eds) Logic, Rationality, and Interaction. LORI 2017. Lecture Notes in Computer Science(), vol 10455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55665-8_33
Download citation
DOI: https://doi.org/10.1007/978-3-662-55665-8_33
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-55664-1
Online ISBN: 978-3-662-55665-8
eBook Packages: Computer ScienceComputer Science (R0)