Skip to main content

Boosting Distance-Based Revision Using SAT Encodings

  • Conference paper
  • First Online:
Logic, Rationality, and Interaction (LORI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10455))

Included in the following conference series:

Abstract

Belief revision has been studied for more than 30 years, and the theoretical properties of the belief revision operators are now well-known. Contrastingly, there are almost no practical applications of these operators. One of the reasons is the computational complexity of the corresponding inference problem, which is typically NP-hard and coNP-hard. Especially, existing implementations of belief revision operators are capable to solve toy instances, but are still unable to cope with real-size problem instances. However, the improvements achieved by SAT solvers for the past few years have been very impressive and they allow to tackle the solving of instances of inference problems located beyond NP. In this paper we describe and evaluate SAT encodings for a large family of distance-based belief revision operators. The results obtained pave the way for the practical use of belief revision operators in large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symb. Logic 50(2), 510–530 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cadoli, M., Donini, F., Liberatore, P., Schaerf, M.: The size of a revised knowledge base. Artif. Intell. 115(1), 25–64 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dalal, M.: Investigations into a theory of knowledge base revision. In: Proceedings of the Seventh AAAI Conference on Artificial Intelligence (AAAI 1988), pp. 475–479 (1988)

    Google Scholar 

  4. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39071-5_13

    Chapter  Google Scholar 

  5. Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40627-0_21

    Chapter  Google Scholar 

  6. Delgrande, J.P., Schaub, T.: A consistency-based framework for merging knowledge bases. J. Appl. Logic 5(3), 459–477 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Delgrande, J.P., Liu, D.H., Schaub, T., Thiele, S.: COBA 2.0: a consistency-based belief change system. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 78–90. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75256-1_10

    Chapter  Google Scholar 

  8. Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates, and counterfactuals. Artif. Intell. 57(2–3), 227–270 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change. Artif. Intell. 52(3), 263–294 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Konieczny, S., Lagniez, J.M., Marquis, P.: SAT encodings for distance-based belief merging operators. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI 2017), pp. 1163–1169 (2017)

    Google Scholar 

  11. Lafage, C., Lang, J.: Propositional distances and preference representation. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 48–59. Springer, Heidelberg (2001). doi:10.1007/3-540-44652-4_6

    Chapter  Google Scholar 

  12. Liberatore, P.: Compilation of intractable problems and its application to artificial intelligence. Ph.D. thesis, Università di Roma “La Sapienza” (1998)

    Google Scholar 

  13. Lundberg, R.U., Ribeiro, M.M., Wassermann, R.: A Framework for empirical evaluation of belief change operators. In: Barros, L.N., Finger, M., Pozo, A.T., Gimenénez-Lugo, G.A., Castilho, M. (eds.) SBIA 2012. LNCS, pp. 12–21. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34459-6_2

    Chapter  Google Scholar 

  14. Nebel, B.: How hard is it to revise a belief base? In: Dubois, D., Prade, H. (eds.) Belief Change. Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 3, pp. 77–145. Kluwer Academic, Netherlands (1998)

    Chapter  Google Scholar 

  15. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. Technical report, Symbolic Computation Group, University of Tübingen (2005)

    Google Scholar 

  17. Tseitin, G.: Structures in constructive mathematics and mathematical logic. In: On the Complexity of Derivation in Propositional Calculus, pp. 115–125. Steklov Mathematical Institute (1968)

    Google Scholar 

  18. Williams, M.A., Sims, A.: Saten: an object-oriented web-based revision and extraction engine. CoRR cs.AI/0003059 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Marquis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Konieczny, S., Lagniez, JM., Marquis, P. (2017). Boosting Distance-Based Revision Using SAT Encodings. In: Baltag, A., Seligman, J., Yamada, T. (eds) Logic, Rationality, and Interaction. LORI 2017. Lecture Notes in Computer Science(), vol 10455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55665-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55665-8_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55664-1

  • Online ISBN: 978-3-662-55665-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics