Skip to main content

The Snow Team Problem

(Clearing Directed Subgraphs by Mobile Agents)

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10472))

Included in the following conference series:

  • 696 Accesses

Abstract

We study several problems of clearing subgraphs by mobile agents in digraphs. The agents can move only along directed walks of a digraph and, depending on the variant, their initial positions may be pre-specified. In general, for a given subset \(\mathcal {S}\) of vertices of a digraph D and a positive integer k, the objective is to determine whether there is a subgraph \(H=(\mathcal {V}_H,\mathcal {A}_H)\) of D such that (a) \(\mathcal {S}\subseteq \mathcal {V}_H\), (b) H is the union of k directed walks in D, and (c) the underlying graph of H includes a Steiner tree for \(\mathcal {S}\). We provide several results on parameterized complexity and hardness of the problems.

Research partially supported by National Science Centre, Poland, grant number 2015/17/B/ST6/01887.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdi, A., Feldmann, A.E., Guenin, B., Könemann, J., Sanità, L.: Lehman’s theorem and the directed Steiner tree problem. SIAM J. Discret. Math. 30(1), 141–153 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alspach, B., Dyer, D., Hanson, D., Yang, B.: Arc searching digraphs without jumping. In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 354–365. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73556-4_37

    Chapter  Google Scholar 

  3. Amiri, S.A., Kaiser, L., Kreutzer, S., Rabinovich, R., Siebertz, S.: Graph searching games and width measures for directed graphs. In: 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015), pp. 34–47 (2015)

    Google Scholar 

  4. Barrière, L., Flocchini, P., Fomin, F.V., Fraigniaud, P., Nisse, N., Santoro, N., Thilikos, D.M.: Connected graph searching. Inf. Comput. 219, 1–16 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beerenwinkel, N., Beretta, S., Bonizzoni, P., Dondi, R., Pirola, Y.: Covering pairs in directed acyclic graphs. Comput. J. 58(7), 1673–1686 (2015)

    Article  MATH  Google Scholar 

  6. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S., Obdrzálek, J.: The dag-width of directed graphs. J. Comb. Theory Ser. B 102(4), 900–923 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Best, M.J., Gupta, A., Thilikos, D.M., Zoros, D.: Contraction obstructions for connected graph searching. Discret. Appl. Math. 209, 27–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Björklund, A., Husfeldt, T., Taslaman, N.: Shortest cycle through specified elements. In: Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 1747–1753 (2012)

    Google Scholar 

  9. Björklund, A., Kaski, P., Kowalik, L.: Constrained multilinear detection and generalized graph motifs. Algorithmica 74(2), 947–967 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borowiecki, P., Dereniowski, D., Pralat, P.: Brushing with additional cleaning restrictions. Theor. Comput. Sci. 557, 76–86 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Breisch, R.L.: An intuitive approach to speleotopology. Southwest. Cavers (A Publ. Southwest. Region Natl. Speleol. Soc.) 6, 72–78 (1967)

    Google Scholar 

  12. Bryant, D., Francetic, N., Gordinowicz, P., Pike, D.A., Pralat, P.: Brushing without capacity restrictions. Discret. Appl. Math. 170, 33–45 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Charikar, M., Chekuri, C., Cheung, T.-Y., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation algorithms for directed Steiner problems. J. Algorithms 33(1), 73–91 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chitnis, R.H., Esfandiari, H., Hajiaghayi, M.T., Khandekar, R., Kortsarz, G., Seddighin, S.: A tight algorithm for strongly connected steiner subgraph on two terminals with demands (extended abstract). In: Cygan, M., Heggernes, P. (eds.) IPEC 2014. LNCS, vol. 8894, pp. 159–171. Springer, Cham (2014). doi:10.1007/978-3-319-13524-3_14

    Google Scholar 

  15. de Oliveira Oliveira, M.: An algorithmic metatheorem for directed treewidth. Discret. Appl. Math. 204, 49–76 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dereniowski, D.: Connected searching of weighted trees. Theor. Comp. Sci. 412, 5700–5713 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dereniowski, D.: From pathwidth to connected pathwidth. SIAM J. Discret. Math. 26(4), 1709–1732 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dyer, D., Yang, B., Yaşar, Ö.: On the fast searching problem. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 143–154. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68880-8_15

    Chapter  Google Scholar 

  19. Feldmann, A.E., Marx, D.: The complexity landscape of fixed-parameter directed Steiner network problems. In: 43rd International Colloquium on Automata, Languages, Programming (ICALP), pp. 27:1–27:14 (2016)

    Google Scholar 

  20. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S., Rao, B.V.R.: Faster algorithms for finding and counting subgraphs. J. Comput. Syst. Sci. 78(3), 698–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Friggstad, Z., Könemann, J., Kun-Ko, Y., Louis, A., Shadravan, M., Tulsiani, M.: Linear programming hierarchies suffice for directed steiner tree. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 285–296. Springer, Cham (2014). doi:10.1007/978-3-319-07557-0_24

    Chapter  Google Scholar 

  22. Gabow, H.N., Maheshwari, S.N., Osterweil, L.J.: On two problems in the generation of program test paths. IEEE Trans. Softw. Eng. 2(3), 227–231 (1976)

    Article  MathSciNet  Google Scholar 

  23. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  24. Gaspers, S., Messinger, M.-E., Nowakowski, R.J., Pralat, P.: Parallel cleaning of a network with brushes. Discret. Appl. Math. 158(5), 467–478 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hunter, P., Kreutzer, S.: Digraph measures: Kelly decompositions, games, and orderings. Theor. Comput. Sci. 399(3), 206–219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jones, M., Lokshtanov, D., Ramanujan, M.S., Saurabh, S., Suchý, O.: Parameterized complexity of directed Steiner tree on sparse graphs. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 671–682. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40450-4_57

    Chapter  Google Scholar 

  27. Kolman, P., Pangrác, O.: On the complexity of paths avoiding forbidden pairs. Discret. Appl. Math. 157(13), 2871–2876 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70575-8_47

    Chapter  Google Scholar 

  29. Koutis, I., Williams, R.: Limits and applications of group algebras for parameterized problems. ACM Trans. Algorithms 12(3), 31 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kováĉ, J.: Complexity of the path avoiding forbidden pairs problem revisited. Discret. Appl. Math. 161(10–11), 1506–1512 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Laekhanukit, B.: Approximating directed Steiner problems via tree embedding. In: 43rd International Colloquium on Automata, Languages, Programming (ICALP), 74:1–74:13 (2016)

    Google Scholar 

  32. Levcopoulos, C., Lingas, A., Nilsson, B.J., Żyliński, P.: Clearing connections by few agents. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 289–300. Springer, Cham (2014). doi:10.1007/978-3-319-07890-8_25

    Chapter  Google Scholar 

  33. Messinger, M.-E., Nowakowski, R.J., Pralat, P.: Cleaning a network with brushes. Theor. Comput. Sci. 399(3), 191–205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Messinger, M.-E., Nowakowski, R.J., Pralat, P.: Cleaning with brooms. Graphs Comb. 27(2), 251–267 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ntafos, S.C., Gonzalez, T.: On the computational complexity of path cover problems. J. Comput. Syst. Sci. 29(2), 225–242 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ntafos, S.C., Hakimi, S.L.: On path cover problems in digraphs and applications to program testing. IEEE Trans. Softw. Eng. 5(5), 520–529 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ntafos, S.C., Hakimi, S.L.: On structured digraphs and program testing. IEEE Trans. Comput. C–30(1), 67–77 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  38. Otter, R.: The number of trees. Ann. Math. Second Ser. 49(3), 583–599 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  39. Parsons, T.D.: Pursuit-evasion in a graph. In: Alavi, Y., Lick, D.R. (eds.) Theory and Applications of Graphs. LNM, vol. 642, pp. 426–441. Springer, Heidelberg (1978). doi:10.1007/BFb0070400

    Chapter  Google Scholar 

  40. Petrov, N.N.: A problem of pursuit in the absence of information on the pursued. Differentsial’nye Uravneniya 18, 1345–1352 (1982)

    MathSciNet  Google Scholar 

  41. Suchý, O.: On directed Steiner trees with multiple roots. In: Heggernes, P. (ed.) WG 2016. LNCS, vol. 9941, pp. 257–268. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53536-3_22

    Chapter  Google Scholar 

  42. Watel, D., Weisser, M.-A., Bentz, C., Barth, D.: Directed Steiner tree with branching constraint. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 263–275. Springer, Cham (2014). doi:10.1007/978-3-319-08783-2_23

    Google Scholar 

  43. Watel, D., Weisser, M.-A., Bentz, C., Barth, D.: Directed Steiner trees with diffusion costs. J. Comb. Optim. 32(4), 1089–1106 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Williams, R.: Finding paths of length \(k\) in \({O}^{*} (2^k)\) time. Inf. Process. Lett. 109(6), 315–318 (2009)

    Google Scholar 

  45. Zientara, M.: Personal communication (2016)

    Google Scholar 

  46. Zosin, L., Khuller, S.: On directed Steiner trees. In: Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 59–63 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Żyliński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Dereniowski, D., Lingas, A., Persson, M., Urbańska, D., Żyliński, P. (2017). The Snow Team Problem. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55751-8_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55750-1

  • Online ISBN: 978-3-662-55751-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics