Skip to main content

On Weak-Space Complexity over Complex Numbers

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10472))

Included in the following conference series:

Abstract

Defining a feasible notion of space over the Blum-Shub-Smale (BSS) model of algebraic computation is a long standing open problem. In an attempt to define a right notion of space complexity for the BSS model, Naurois [CiE 2007] introduced the notion of weak-space. We investigate the weak-space bounded computations and their plausible relationship with the classical space bounded computations. For weak-space bounded, division-free computations over BSS machines over complex numbers with \(\mathop {=}\limits ^{?}0\) tests, we show the following:

  1. 1.

    The Boolean part of the weak log-space class is contained in deterministic log-space, i.e., \(\mathsf{BP}(\mathsf{LOGSPACE_W}) \subseteq \mathsf{DLOG}\);

  2. 2.

    There is a set \(L\in \) \(\mathsf {NC}^{1}_{\mathbb {C}}\) that cannot be decided by any deterministic BSS machine whose weak-space is bounded above by a polynomial in the input length, i.e., \({\mathsf {NC}}^1_{\mathbb {C}} \nsubseteq \mathsf{PSPACE_W}\).

The second result above resolves the first part of Conjecture 1 stated in [6] over complex numbers and exhibits a limitation of weak-space. The proof is based on the structural properties of the semi-algebraic sets contained in \(\mathsf{PSPACE_W}\) and the result that any polynomial divisible by a degree-\(\omega (1)\) elementary symmetric polynomial cannot be sparse. The lower bound on the sparsity is proved via an argument involving Newton polytopes of polynomials and bounds on number of vertices of these polytopes, which might be of an independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the complexity of numerical analysis. SIAM J. Comput. 38(5), 1987–2006 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1997). doi:10.1007/978-1-4612-0701-6

    MATH  Google Scholar 

  3. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. (New Ser.) Am. Math. Soc. 21(1), 1–46 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cucker, F.: P\({}_{ \text{ R }}\) != NC\({}_{ \text{ R }}\). J. Complex. 8(3), 230–238 (1992)

    Article  MathSciNet  Google Scholar 

  5. Cucker, F., Grigoriev, D.: On the power of real turing machines over binary inputs. SIAM J. Comput. 26(1), 243–254 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Naurois, P.J.: A measure of space for computing over the reals. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 231–240. Springer, Heidelberg (2006). doi:10.1007/11780342_25

    Chapter  Google Scholar 

  7. Forbes, M.A.: Personal communication

    Google Scholar 

  8. Forbes, M.A., Shpilka, A., Tzameret, I., Wigderson, A.: Proof complexity lower bounds from algebraic circuit complexity. CoRR, abs/1606.05050 (2016)

    Google Scholar 

  9. Fournier, H., Koiran, P.: Are lower bounds easier over the reals? In: Proceedings of 30th Annual ACM Symposium on Theory of Computing, STOC 1998, New York, NY, USA, pp. 507–513. ACM (1998)

    Google Scholar 

  10. Gao, S.: Absolute irreducibility of polynomials via Newton polytopes. J. Algebra 237(1), 501–520 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Gruenbaum, B.: Convex Polytopes. Interscience Publisher, New York (1967)

    Google Scholar 

  12. Joglekar, P., Raghavendra Rao, B.V., Sivakumar, S.: On weak-space complexity over complex numbers. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 24, p. 87 (2017)

    Google Scholar 

  13. Koiran, P.: Computing over the reals with addition and order. Theoret. Comput. Sci. 133(1), 35–47 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koiran, P.: Elimination of constants from machines over algebraically closed fields. J. Complex. 13(1), 65–82 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koiran, P.: A weak version of the Blum, Shub, and Smale model. J. Comput. Syst. Sci. 54(1), 177–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Koiran, P., Perifel, S.: VPSPACE and a transfer theorem over the complex field. Theor. Comput. Sci. 410(50), 5244–5251 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koiran, P., Perifel, S.: VPSPACE and a transfer theorem over the reals. Comput. Complex. 18(4), 551–575 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Koiran, P., Portier, N., Tavenas, S., Thomassé, S.: A tau-conjecture for Newton polygons. Found. Comput. Math. 15(1), 185–197 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mahajan, M., Raghavendra Rao, B.V.: Small space analogues of valiant’s classes and the limitations of skew formulas. Comput. Complex. 22(1), 1–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meer, K., Michaux, C.: A survey on real structural complexity theory. Bull. Belg. Math. Soc. Simon Stevin 4(1), 113–148 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Michaux, C.: Une remarque à propos des machines sur \(\mathbb{R}\) introduites par Blum, Shub et Smale. Comptes Rendus de l’Académie des Sciences de Paris 309(7), 435–437 (1989)

    MathSciNet  MATH  Google Scholar 

  22. Morandi, P.: Field and Galois Theory. Graduate Texts in Mathematics. Springer, Cham (1996). doi:10.1007/978-1-4612-4040-2

    Book  MATH  Google Scholar 

  23. Ostrowski, A.M.: On multiplication and factorization of polynomials, i. lexicographic ordering and extreme aggregates of terms. Aequationes Mathematicae 13, 201–228 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  25. Shafarevich, I.R.: Basic Algebraic Geometry, 3rd edn. Springer, Berlin (2013). doi:10.1007/978-3-642-96200-4

    Book  MATH  Google Scholar 

  26. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: a survey of recent results and open questions. Found. Trends\(\textregistered \) Theoret. Comput. Sci. 5(3–4), 207–388 (2010)

    Google Scholar 

  27. Tzamaret, I.: Studies in algebraic and propositional proof complexity. Ph.D. thesis, Tel Aviv University (2008)

    Google Scholar 

  28. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995). doi:10.1007/978-1-4613-8431-1

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for this and an earlier version of the paper for suggestions that helped to improve the presentation of proofs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushkar S. Joglekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Joglekar, P.S., Rao, B.V.R., Sivakumar, S. (2017). On Weak-Space Complexity over Complex Numbers. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55751-8_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55750-1

  • Online ISBN: 978-3-662-55751-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics