Skip to main content

Enhancing User Rating Database Consistency Through Pruning

  • Chapter
  • First Online:
Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIV

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 10620))

Abstract

Recommender systems are based on information about users’ past behavior to formulate recommendations about their future actions. However, as time goes by the interests and likings of people may change: people listen to different singers or even different types of music, watch different types of movies, read different types of books and so on. Due to this type of changes, an amount of inconsistency is introduced in the database since a portion of it does not reflect the current preferences of the user, which is its intended purpose.

In this paper, we present a pruning technique that removes old aged user behavior data from the ratings database, which are bound to correspond to invalidated preferences of the user. Through pruning (1) inconsistencies are removed and data quality is upgraded, (2) better rating prediction generation times are achieved and (3) the ratings database size is reduced. We also propose an algorithm for determining the amount of pruning that should be performed, allowing the tuning and operation of the pruning algorithm in an unsupervised fashion.

The proposed technique is evaluated and compared against seven aging algorithms, which reduce the importance of aged ratings, and a state-of-the-art pruning algorithm, using datasets with varying characteristics. It is also validated using two distinct rating prediction computation strategies, namely collaborative filtering and matrix factorization. The proposed technique needs no extra information concerning the items’ characteristics (e.g. categories that they belong to or attributes’ values), can be used in all rating databases that include a timestamp and has been proved to be effective in any size of users-items database and under two rating prediction computation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakshy, E., Eckles, D., Yan, R., Rosenn, I.: Social influence in social advertising: evidence from field experiments. In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 146–161 (2012)

    Google Scholar 

  2. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72079-9_9

    Chapter  Google Scholar 

  3. Song, Y., Elkahky, A.M., He, X.: Multi-rate deep learning for temporal recommendation. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2016 (2016)

    Google Scholar 

  4. Li, L., Zheng, L., Yang, F., Li, T.: Modeling and broadening temporal user interest in personalized news recommendation. Expert Syst. Appl. 41(7), 3168–3177 (2014)

    Article  Google Scholar 

  5. Minku, L., Yao, X.: DDD: a new ensemble approach for dealing with concept drift. IEEE Trans. Knowl. Data Eng. 24(4), 619–633 (2012)

    Article  Google Scholar 

  6. Yin, D., Hong, L., Xue, Z., Davison, B.D.: Temporal dynamics of user interests in tagging systems. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI 2011), pp. 1279–1285 (2011)

    Google Scholar 

  7. MovieLens datasets. http://grouplens.org/datasets/movielens/

  8. Koren, Y.: Factor in the neighbors: scalable and accurate collaborative filtering. ACM Trans. Knowl. Discov. Data (TKDD) 4(1), 1 (2010)

    Article  Google Scholar 

  9. Whitby, A., Jøsang, A., Indulska, J.: Filtering out unfair ratings in Bayesian reputation systems. In: Proceedings of the Workshop on Trust in Agent Societies, at the Autonomous Agents and Multi Agent Systems Conference (AAMAS 2004), New York, July 2004

    Google Scholar 

  10. Nilashi, M., Ibrahim, O.-B., Ithnin, N., Sarmin, N.H.: A multi-criteria collaborative filtering recommender system for the tourism domain using Expectation Maximization (EM) and PCA–ANFIS. Electron. Commer. Res. Appl. 14(6), 542–562 (2015)

    Article  Google Scholar 

  11. Anthony, V., Ayala, A., Alzoghbi, A., Przyjaciel-Zablocki, M., Schätzle, A., Lausen, G.: Speeding up collaborative filtering with parametrized preprocessing. In: Proceeding of the 6th International Workshop on Social Recommender Systems (SRS 2015), in Conjunction with the 2015 ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2015), Sydney, Australia, August 2015

    Google Scholar 

  12. Margaris, D., Vassilakis, C., Georgiadis, P.: Knowledge-based leisure time recommendations in social networks. In: Current Trends on Knowledge-Based Systems. Intelligent Systems Reference Library, vol. 120, pp. 23–48 (2017)

    Google Scholar 

  13. Liu, F., Joo Lee, H.: Use of social network information to enhance collaborative filtering performance. Expert Syst. Appl. Int. J. Arch. 37(7), 4772–4778 (2010)

    Article  Google Scholar 

  14. Balabanovic, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  15. Burke, R.: Hybrid recommender systems: Survey and experiments. User Model. User-Adap. Inter. 12(4), 331–370 (2002)

    Article  MATH  Google Scholar 

  16. Gong, S.: A collaborative filtering recommendation algorithm based on user clustering and item clustering. J. Softw. 5(7), 745–752 (2010)

    Article  Google Scholar 

  17. Das, A., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: Proceedings of the 16th international conference on World Wide Web, pp. 271–280 (2007)

    Google Scholar 

  18. Margaris, D., Georgiadis, P., Vassilakis, C.: A collaborative filtering algorithm with clustering for personalized web service selection in business processes. In: Proceedings of RCIS 2015, Athens, Greece, pp. 169–180 (2015)

    Google Scholar 

  19. Bakshy, E., Rosenn, I., Marlow, C., Adamic L.: The role of social networks in information diffusion. In: Proceeding of the 21st international conference on World Wide Web, pp. 519–528 (2012)

    Google Scholar 

  20. Vaz, P.C., Ribeiro, R., de Matos, D.M.: Understanding temporal dynamics of ratings in the book recommendation scenario. In: Proceeding of the 2013 International Conference on Information Systems and Design of Communication, pp. 11–15 (2013)

    Google Scholar 

  21. Han, J., Morag, C.: The influence of the sigmoid function parameters on the speed of backpropagation learning. In Mira, J., Sandoval, F. (eds.) From Natural to Artificial Neural Computation, pp. 195–201 (1995)

    Google Scholar 

  22. Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender systems. Found. Trends Hum.-Comput. Interact. 4(2), 81–173 (2011)

    Article  Google Scholar 

  23. Maxwell Harper, F., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TiiS) 5(4), 19 (2015)

    Google Scholar 

  24. Jaschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in Folksonomies. In: Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2007), pp. 506–514 (2007)

    Google Scholar 

  25. Parra-Santander, D., Brusilovsky, P.: Improving collaborative filtering in social tagging systems for the recommendation of scientific articles. In: Proceedings of Web Intelligence 2010, pp. 136–142 (2010)

    Google Scholar 

  26. Yu, K., Schwaighofer, A., Tresp, V., Xu, X., Kriegel, H.P.: Probabilistic memory-based collaborative filtering. IEEE Trans. Knowl. Data Eng. 16(1), 56–69 (2004)

    Article  Google Scholar 

  27. He, D., Wu, D.: Toward a robust data fusion for document retrieval. In: Proceedings of the IEEE 4th International Conference on Natural Language Processing and Knowledge Engineering – NLP-KE (2008)

    Google Scholar 

  28. Herlocker, J., Konstan, J.A., Riedl, J.: An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Inf. Retrieval 5(4), 287–310 (2002)

    Article  Google Scholar 

  29. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating “Word of Mouth”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 210–217 (1995)

    Google Scholar 

  30. Frey, R.M., Xu, R., Ilic, A.: A novel recommender system in IoT. In: Proceedings of the 5th International Conference on the Internet of Things (IoT) (2015)

    Google Scholar 

  31. Munoz-Organero, M., Ramirez, G.A., Merino, P.M., Kloos, C.D.: A collaborative recommender system based on space-time similarities for an Internet of Things. IEEE Perv. Comput. 9(3), 81–87

    Google Scholar 

  32. Suggest Movie recommendation system. http://www.suggestmemovie.com/

  33. The Table recommendation system. http://thetable.me/

  34. Margaris, D., Vassilakis, C.: Pruning and aging for user histories in collaborative filtering. In: Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (2016)

    Google Scholar 

  35. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. In: IEEE Computer, pp. 42–49, August 2009

    Google Scholar 

  36. Zhang, Y., Zhang, M., Liu, Y., Ma, S., Feng, S.: Localized matrix factorization for recommendation based on matrix block diagonal forms. In: Proceedings of the 22nd international conference on World Wide Web (WWW 2013), pp. 1511–1520 (2013)

    Google Scholar 

  37. Wen, H., Ding, G., Liu, C., Wang, J.: Matrix factorization meets cosine similarity: addressing sparsity problem in collaborative filtering recommender system. In: Chen, L., Jia, Y., Sellis, T., Liu, G. (eds.) APWeb 2014. LNCS, vol. 8709, pp. 306–317. Springer, Cham (2014). doi:10.1007/978-3-319-11116-2_27

    Google Scholar 

  38. Chin, W.-S., Zhuang, Y., Juan, Y.-C., Lin, C.-J.: A fast parallel stochastic gradient method for matrix factorization in shared memory systems. ACM Trans. Intell. Syst. Technol. 6(1), 24 (2015). Article 2

    Article  Google Scholar 

  39. Chin, W.-S., Zhuang, Y., Juan, Y.-C., Lin, C.-J.: A learning-rate schedule for stochastic gradient methods to matrix factorization. In: PAKDD, 2015 (2015)

    Google Scholar 

  40. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Section 10.12. simulated annealing methods. In: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007). ISBN 978–0-521-88068-8

    Google Scholar 

  41. Wu, D., Yuan, Z., Yu, K., Pan, H.: Temporal social tagging based collaborative filtering recommender for digital library. In: Proceeding of ICADL 2012, pp. 199–208 (2012)

    Google Scholar 

  42. McAuley, J., Targett, C., Shi, J., van den Hengel, A.: Image-based recommendations on styles and substitutes. SIGIR (2015)

    Google Scholar 

  43. Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 37 (2014). Article 44

    Article  MATH  Google Scholar 

  44. Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 447–456 (2009)

    Google Scholar 

  45. Vinagre, J., Jorge, A.M.: Forgetting mechanisms for scalable collaborative filtering. J. Braz. Comput. Soc. 18(4), 271–282 (2012)

    Article  Google Scholar 

  46. Gates, M., Anzt, H., Kurzak, J., Dongarra, J.: Accelerating collaborative filtering using concepts from high performance computing. In: Proceedings of the 2015 IEEE International Conference on Big Data (2015)

    Google Scholar 

  47. Larrain, S., Trattner, C., Parra, D., Graells-Garrido, E., Nørvåg, K.: Good times bad times: a study on recency effects in collaborative filtering for social tagging. In: Proceedings of the 9th ACM Conference on Recommender Systems (RecSys 2015), pp. 269–272 (2015)

    Google Scholar 

  48. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts and Technology behind Search. Addison-Wesley Professional, New York (2011)

    Google Scholar 

  49. Papagelis, M., Plexousakis, D.: Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents. Eng. Appl. Artif. Intell. 18(7), 781–789 (2005)

    Article  Google Scholar 

  50. Chitika: The Value of Google Result Positioning. https://chitika.com/google-positioning-value. Accessed 29 Apr 2017

  51. Aggarwal, C.C., Wolf, J.L., Wu, K.-L., Yu, P.S.: Horting hatches an egg: a new graph-theoretic approach to collaborative filtering. In: Proceeding of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 1999), pp. 201–212. ACM (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Vassilakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Margaris, D., Vassilakis, C. (2017). Enhancing User Rating Database Consistency Through Pruning. In: Hameurlain, A., Küng, J., Wagner, R., Decker, H. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXXIV. Lecture Notes in Computer Science(), vol 10620. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55947-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55947-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55946-8

  • Online ISBN: 978-3-662-55947-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics