Skip to main content

KINECT Face Recognition Using Occluded Area Localization Method

  • Chapter
  • First Online:
Transactions on Computational Science XXX

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 10560))

Abstract

Automated face recognition is commonly used for security reinforcement and identity verification purposes. While significant advancement has been made in this domain, modern surveillance techniques are still dependent on variations in pose, orientation of the facial images, difference in the illumination, occlusion, etc. Therefore, face recognition or identification in uncontrolled situations has become an important research topic. In this paper, we propose a new face recognition technique that takes into account partial occlusion, while still accurately identifying the user. The occluded facial areas are detected from the Kinect depth images by extracting features using Uniform Local Binary Pattern (LBP). For localizing occluded regions from the Kinect depth images, a threshold based approach is used to identify the areas close to the camera. The recognition system will discard the occluded regions of the facial images and match only the non-occluded facial part with the gallery of images to find the best possible match. The performance of the recognition system has been evaluated on EUROKOM Kinect face database containing different types of occluded and non-occluded faces with neutral expressions. Experimental results show that the proposed method improves the recognition rate by 4.8% and 5.7% for occlusion by hand and occlusion by paper, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alyüz, N., Gökberk, B., Spreeuwers, L., Veldhuis, R., Akarun, L.: Robust 3D face recognition in the presence of realistic occlusions. In: 5th IAPR IEEE International Conference on Biometrics (ICB), pp. 111–118, March 2012

    Google Scholar 

  2. Canavan, S., Liu, P., Zhang, X., Yin, L.: Landmark localization on 3D/4D range data using a shape index-based statistical shape model with global and local constraints. Comput. Vis. Image Underst. 139, 136–148 (2015)

    Google Scholar 

  3. Cardia Neto, J.B., Marana, A.N.: 3DLBP and HAOG fusion for face recognition utilizing Kinect as a 3D scanner. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp. 66–73. ACM, April 2015

    Google Scholar 

  4. Chen, Y.C., Patel, V.M., Phillips, P.J., Chellappa, R.: Dictionary-based face and person recognition from unconstrained video. IEEE Access 3, 1783–1798 (2015)

    Article  Google Scholar 

  5. Colombo, A., Cusano, C., Schettini, R.: Recognizing faces in 3d images even in presence of occlusions. In: 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, BTAS, pp. 1–6, September 2008

    Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  7. Drira, H., Ben Amor, B., Srivastava, A., Daoudi, M., Slama, R.: 3D face recognition under expressions, occlusions, and pose variations. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2270–2283 (2013)

    Article  Google Scholar 

  8. Forczmański, P., Łabȩdź, P.: Improving the recognition of occluded faces by means of two-dimensional orthogonal projection into local subspaces. In: Kamel, M., Campilho, A. (eds.) ICIAR 2015. LNCS, vol. 9164, pp. 229–238. Springer, Cham (2015). doi:10.1007/978-3-319-20801-5_25

    Chapter  Google Scholar 

  9. Ganguly, S., Bhattacharjee, D., Nasipuri, M.: Depth based occlusion detection and localization from 3D face image. Int. J. Image Graph. Sig. Process. 7(5), 20–31 (2015)

    Article  Google Scholar 

  10. Gul, S., Farooq, H.: A machine learning approach to detect occluded faces in unconstrained crowd scene. In: 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC), pp. 149–155. IEEE, July 2015

    Google Scholar 

  11. Hassaballah, M., Aly, S.: Face recognition: challenges, achievements and future directions. IET Comput. Vis. 9(4), 614–626 (2015)

    Article  Google Scholar 

  12. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using Kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 31(5), 647–663 (2012)

    Article  Google Scholar 

  13. Hsu, G.S.J., Liu, Y.L., Peng, H.C., Wu, P.X.: RGB-D-based face reconstruction and recognition. IEEE Trans. Inf. Forensics Secur. 9(12), 2110–2118 (2014)

    Article  Google Scholar 

  14. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 559–568. ACM, October 2011

    Google Scholar 

  15. Jain, A.K., Nandakumar, K., Ross, A.: 50 years of biometric research: accomplishments, challenges, and opportunities. Pattern Recogn. Lett. 79, 80–105 (2016)

    Article  Google Scholar 

  16. Johnson, R., O’Hara, K., Sellen, A., Cousins, C., Criminisi, A.: Exploring the potential for touchless interaction in image-guided interventional radiology. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3323–3332. ACM, May 2011

    Google Scholar 

  17. KONICA Minolta. http://www.konicaminolta.com/. Accessed 03 Feb 2016

  18. Li, X.X., Dai, D.Q., Zhang, X.F., Ren, C.X.: Structured sparse error coding for face recognition with occlusion. IEEE Trans. Image Process. 22(5), 1889–1900 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liao, S., Jain, A., Li, S.: A fast and accurate unconstrained face detector. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 211–223 (2016)

    Article  Google Scholar 

  20. Min, R., Kose, N., Dugelay, J.L.: KinectFaceDB: A Kinect database for face recognition. IEEE Trans. Syst. Man Cybern. Syst. 44(11), 1534–1548 (2014)

    Article  Google Scholar 

  21. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–87 (2002)

    Article  MATH  Google Scholar 

  22. Ojala, T., Pietikäinen, M., Mäenpää, T.: A generalized Local Binary Pattern operator for multiresolution gray scale and rotation invariant texture classification. In: ICAPR, vol. 1, pp. 397–406, March 2001

    Google Scholar 

  23. Ouloul, M.I., Moutakki, Z., Afdel, K., Amghar, A.: An efficient face recognition using SIFT descriptor in RGB-D images. Int. J. Electr. Comput. Eng. 5(6), 1227–1233 (2015)

    Google Scholar 

  24. Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 947–954, June 2005

    Google Scholar 

  25. Saxena, A., Chung, S.H., Ng, A.Y.: 3-d depth reconstruction from a single still image. Int. J. Comput. Vis. 76(1), 53–69 (2008)

    Article  Google Scholar 

  26. Shao, L., Han, J., Xu, D., Shotton, J.: Computer vision for RGB-D sensors: Kinect and its applications. IEEE Trans. Cybern. 43(5), 1314–1317 (2013)

    Article  Google Scholar 

  27. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56(1), 116–124 (2013)

    Article  Google Scholar 

  28. Srinivasan, A., Balamurugan, V.: Occlusion detection and image restoration in 3D face image. In: TENCON IEEE Region 10 Conference, pp. 1–6, October 2014

    Google Scholar 

  29. Sultana, M., Gavrilova, M., Alhajj, R., Yanushkevich, S.: Adaptive multi-stream score fusion for illumination invariant face recognition. In: IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 94–101, December 2014

    Google Scholar 

  30. Sultana, M., Gavrilova, M., Yanushkevich, S.: Fuzzy rule based quality measures for adaptive multimodal biometric fusion at operation time. In: IJCCI, 6th International Conference on Fuzzy Computation Theory and Applications (FCTA), pp. 146–152 (2014)

    Google Scholar 

  31. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Networks 10(5), 988–999 (1999)

    Article  Google Scholar 

  32. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, p. I-511 (2001)

    Google Scholar 

  33. Xia, Y., Zhang, B., Coenen, F.: Face occlusion detection based on multi-task convolution neural network. In: 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 375–379. IEEE, August 2015

    Google Scholar 

  34. Zohra, F.T., Rahman, M.W., Gavrilova, M.: Occlusion detection and localization from kinect depth images. In: International Conference on Cyberworlds (CW), pp. 189–196. IEEE (2016)

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge NSERC Discovery Grant RT731064, as well as NSERC ENGAGE and URGC for partial funding of this project. Our thanks to all the members of BTLab, Department of Computer Science, University of Calgary, Calgary, AB, Canada for providing their valuable suggestions and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatema Tuz Zohra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Zohra, F.T., Gavrilova, M. (2017). KINECT Face Recognition Using Occluded Area Localization Method. In: L. Gavrilova, M., Tan, C., Sourin, A. (eds) Transactions on Computational Science XXX. Lecture Notes in Computer Science(), vol 10560. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56006-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56006-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56005-1

  • Online ISBN: 978-3-662-56006-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics