Skip to main content

Reforming AMR

  • Conference paper
  • First Online:
Formal Grammar (FG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10686))

Included in the following conference series:

  • 508 Accesses

Abstract

Many recent proposals aim to simplify semantic representations, and Abstract Meaning Representation (AMR) comes from this tradition, but it is nevertheless quite expressive. Bos 2016 proposes a slightly reformed AMR for translation to first order logic. This paper proposes a different augmentation of AMR that is more easily provided, and a slightly different mapping to higher order and dynamic logic. The proposed augmentation can be, at least in most cases, easily computed from standard ‘unreformed’ AMR corpora. The mapping from this augmented AMR to logical representation is a finite state multi bottom up tree transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A tree decomposition of undirected graph g = (V,R) is a tree t = (U,S) where (i) \(\bigcup _{\hbox {u}\in \hbox {U}}\hbox {u}=\hbox {V}\), (ii) if an arc in g connects \(\hbox {v}_i\) and \(\hbox {v}_j\), then some \(\hbox {u}\in \hbox {U}\) contains both \(\hbox {v}_i\) and \(\hbox {v}_j\), and (iii) if some node \(\hbox {v}\) of g is in two nodes \(\hbox {u}_i,\hbox {u}_j\) of U, then \(\hbox {v}\) is in every node on the path between \(\hbox {u}_i\) and \(\hbox {u}_j\). The treewidth of a decomposition is max\(_{\hbox {u}\in \hbox {U}}|\hbox {u}|-1\). The treewidth of g is the minimum treewidth over all decompositions of g. Many problems have complexities that increase with treewidth [7, 20], and Courcelle’s theorem relates treewidth to MSO definability [15]. Computing treewidth is NP-complete, but code for computing treewidth of small graphs is available at [1].

  2. 2.

    HOL with generalized quantifiers is introduced, for example, in Carpenter’s [11, Sect. 3]. Like Carpenter, we write \(\forall x\phi \) for \(\hbox {every}(\lambda x.\phi )\), and \(\exists x\phi \) similarly.

  3. 3.

    The correspondence between AAMR subgraphs and elements of the input string is sometimes given by hand-specified alignments, and there are a number of proposals about how to compute them when hand-specifications are not available [13, 17]. Note that “:polarity -” will be aligned with the negation in the input string. In the example above with ‘most’ and ‘not’, the surface order and the alphanumeric order coincide.

  4. 4.

    The discussion in Hobbs and Shieber has an error that does not affect their main point. Their example sentence is not talking about things that are both representatives and also of-some-company – that doesn’t quite make sense intuitively, and in fact gets the wrong entailments; see e.g. [37]. Rather, representative is relational and of some company specifies one of its arguments. We rephrase the Hobbs and Shieber argument here without that mistake. In the LDC AMR corpus [27], representative is treated relationally as it should be, as denoting an :arg0-of the predicate represent-01, where :arg0 is the representer and :arg1 is the thing represented.

  5. 5.

    Here we focus on the definite article, sketching briefly the fundamental change to a dynamic perspective. But indefinite articles are even trickier and complicate the picture of how scope works, impeding progress until it was recognized that they require special treatment. As discussed for example in Kratzer [28] and references cited there, they are unlike quantifiers like every or three, unlike referential expressions formed with the, and not adequately handled by the discourse closure proposed by Heim [22] and DRT [25]. See e.g. [10].

References

  1. Adler, I., Dell, H., Husfeldt, T., Larisch, L., Salfelder, F.: The parameterized algorithms and computational experiments challenge - Track A: Treewidth (2016). https://pacechallenge.wordpress.com/pace-2016/track-a-treewidth/

  2. Allen, J.F., Swift, M., de Beaumont, W.: Deep semantic analysis of text. In: ACL, SIGSEM Symposium on Semantics in Systems for Text Processing (STEP) (2008)

    Google Scholar 

  3. Artzi, Y., Lee, K., Zettlemoyer, L.: Broad-coverage CCG semantic parsing with AMR. In: 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1699–1710 (2015)

    Google Scholar 

  4. Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representation for sembanking. In: Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, pp. 178–186 (2013)

    Google Scholar 

  5. Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representation 1.2.2 specification (2015). https://github.com/amrisi/amr-guidelines/blob/master/amr.md. Accessed 18 Sept 2015

  6. Bender, E.M., Flickinger, D., Oepen, S., Packard, W., Copestake, A.: Layers of interpretation: on grammar and compositionality. In: 11th International Conference on Computational Semantics, pp. 239–249 (2015)

    Google Scholar 

  7. Bienvenu, M., Kikot, S., Podolskii, V.: Tree-like queries in OWL 2 QL: succinctness and complexity results (2015). https://arxiv.org/abs/1406.3047

  8. Bonial, C., Babko-Malaya, O., Choi, J.D., Hwang, J., Palmer, M.: http://clear.colorado.edu/compsem/documents/propbank_guidelines.pdf (2010)

  9. Bos, J.: Expressive power of abstract meaning representations. Comput. Linguit. 42(3), 527–535 (2016)

    Article  MathSciNet  Google Scholar 

  10. Brasoveanu, A., Farkas, D.F.: How indefinites choose their scope. Linguist. Philos. 34, 1–55 (2011)

    Article  Google Scholar 

  11. Carpenter, B.: Type-Logical Semantics. MIT Press, Cambridge (1997)

    MATH  Google Scholar 

  12. Champollion, L.: The interaction of compositional semantics and event semantics. Linguist. Philos. 38(1), 31–66 (2015)

    Article  Google Scholar 

  13. Chen, W.T., Palmer, M.: Unsupervised AMR-dependency parse alignment. In: 15th Conference of the European Chapter of the Association for Computational Linguistics (2017)

    Google Scholar 

  14. Copestake, A., Flickinger, D., Pollard, C., Sag, I.: Minimal recursion semantics: an introduction. Res. Lang. Comput. 3, 281–332 (2005)

    Article  Google Scholar 

  15. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic. Cambridge University Press, New York (2012)

    Book  MATH  Google Scholar 

  16. Engelfriet, J., Lilin, E., Maletti, A.: Composition and decomposition of extended multi bottom-up tree transducers. Acta Informatica 46(8), 561–590 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Flanigan, J., Thomson, S., Carbonell, J., Dyer, C., Smith, N.A.: A discriminative graph-based parser for the abstract meaning representation. In: Annual Meeting of the Association for Computational Linguistics (2014)

    Google Scholar 

  18. Fülöp, Z., Kühnemann, A., Vogler, H.: A bottom-up characterization of deterministic top-down tree transducers with regular look-ahead. Inf. Process. Lett. 91, 57–67 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fülöp, Z., Kühnemann, A., Vogler, H.: Linear deterministic multi bottom-up tree transducers. Theor. Comput. Sci. 347, 276–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ganian, R., Hliněný, P., Kneis, J., Langer, A., Obdržálek, J., Rossmanith, P.: Digraph width measures in parameterized algorithmics. Discrete Appl. Math. 168, 88–107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. de Groote, P.: Towards a Montagovian account of dynamics. In: Semantics and Linguistic Theory 16 (2006)

    Google Scholar 

  22. Heim, I.: The semantics of definite and indefinite noun phrases. Ph.D. thesis, University of Massachusetts, Amherst (1982)

    Google Scholar 

  23. Hobbs, J.R., Shieber, S.M.: An algorithm for generating quantifier scopings. Comput. Linguist. 13, 47–63 (1987)

    Google Scholar 

  24. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: the making of a web ontology language. Web Semant. Sci. Serv. Agents World Wide Web 1, 7–26 (2003)

    Article  Google Scholar 

  25. Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, G., Janssen, T., Stokhof, M. (eds.) Formal Methods in the Study of Language. Mathematisch Centrum, Amsterdam (1981)

    Google Scholar 

  26. Keenan, E.L.: Further beyond the Frege boundary. In: van der Does, J., van Eijck, J. (eds.) Quantifiers, Logic, and Language. CSLI Publications, Amsterdam (1996)

    Google Scholar 

  27. Knight, K., et al.: Abstract meaning representation (AMR) annotation release 1.0 (2014). https://catalog.ldc.upenn.edu/LDC2014T12, http://amr.isi.edu/download.html

  28. Kratzer, A.: Scope or pseudoscope? Are there wide-scope indefinites? In: Rothstein, S. (ed.) Events and Grammar. Springer, Dordrecht (1998)

    Google Scholar 

  29. Landau, I.: Control in Generative Grammar: A Research Companion. Cambridge University Press, New York (2013)

    Book  Google Scholar 

  30. Landman, F.: Plurality. In: Lappin, S. (ed.) Handbook of Contemporary Semantic Theory, pp. 425–457. Oxford University Press, Oxford (1996)

    Google Scholar 

  31. Langekilde, I., Knight, K.: Generation that exploits corpus-based statistical knowledge. In: 36th Annual Meeting of the ACL, pp. 704–710 (1998)

    Google Scholar 

  32. Lebedeva, E.: Expression de la dynamique du discours a l’aide de continuations. Ph.D. thesis, Université de Lorraine (2012)

    Google Scholar 

  33. Maletti, A.: The power of weighted regularity-preserving multi bottom-up tree transducers. Int. J. Found. Comput. Sci. 26(7), 293–305 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Montague, R.: Pragmatics. In: Thomason, R.H. (ed.) Formal Philosophy: Selected papers of Richard Montague. Yale University Press, New Haven, 1968/1974

    Google Scholar 

  35. Morgenstern, L., Davis, E., Ortiz, C.L.: Planning, executing, and evaluating the Winograd schema challenge. AI Mag. 37(1), 50–54 (2016)

    Article  Google Scholar 

  36. Muskens, R.: Order-independence and underspecification. In: Kamp, H., Partee, B. (eds.) Context-dependence in the Analysis of Linguistic Meaning, pp. 239–254. Elsevier (2004)

    Google Scholar 

  37. Partee, B.H., Borschev, V.: Genitives, relational nouns, and argument-modifier ambiguity. In: Lang, E., Maienborn, C., Fabricius-Hansen, C. (eds.) Modifying Adjuncts, pp. 67–112. Mouton de Gruyter, Berlin (2003)

    Google Scholar 

  38. Peters, P.S., Westerståhl, D.: Quantifiers in Language and Logic. Oxford University Press, Oxford (2006)

    Google Scholar 

  39. Szabolcsi, A.: Quantification. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  40. van Lambalgen, M., Hamm, F.: The Proper Treatment of Events. Blackwell, Oxford (2005)

    Book  MATH  Google Scholar 

  41. Weischedel, R., Pradhan, S., Ramshaw, L., Kaufman, J., Franchini, M., El-Bachouti, M.: https://catalog.ldc.upenn.edu/docs/LDC2013T19/OntoNotes-Release-5.0.pdf (2015)

Download references

Acknowledgments

Many thanks to the anonymous reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Stabler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stabler, E. (2018). Reforming AMR. In: Foret, A., Muskens, R., Pogodalla, S. (eds) Formal Grammar . FG 2017. Lecture Notes in Computer Science(), vol 10686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56343-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56343-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56342-7

  • Online ISBN: 978-3-662-56343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics