Skip to main content

The Logic of Ambiguity: The Propositional Case

  • Conference paper
  • First Online:
Formal Grammar (FG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10686))

Included in the following conference series:

Abstract

We present a logical calculus extending the classical propositional calculus with an additional connective which has some features of substructural logic. This results in a logic which seems to be suitable for reasoning with ambiguity. We use a Gentzen style proof theory based on multi-contexts, which allow us to have two ways to combine formulas to sequences. These multi-contexts in turn allow to embed both features of classical logic as well as substructural logic, depending on connectives, which would be impossible with simple sequents. Finally, we present an algebraic semantics and a completeness theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This roughly distinguishes ambiguity from cases of vagueness [10].

  2. 2.

    Technically, this translation presupposes the existence of a boy, this however is irrelevant to our argument.

  3. 3.

    Thanks to an anonymous reviewer for this example!.

  4. 4.

    Actually, this would be a meta-metalanguage, because logical representations are already a form of representation of real meanings.

References

  1. Atlas, J.D.: Philosophy without Ambiguity. Clarendon Library of Logic and Philosophy. Clarendon Press, Oxford (1989)

    Google Scholar 

  2. Dyckhoff, R., Sadrzadeh, M., Truffaut, J.: Algebra, proof theory and applications for a logic of propositions, actions and adjoint modal operators. Electr. Notes Theor. Comput. Sci. 286, 157–172 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Egg, M.: Semantic underspecification. Lang. Linguist. Compass 4(3), 166–181 (2010)

    Article  Google Scholar 

  4. Kracht, M.: Mathematics of Language. Mouton de Gruyter, Berlin (2003)

    Book  MATH  Google Scholar 

  5. Lahav, O., Avron, A.: A unified semantic framework for fully structural propositional sequent systems. ACM Trans. Comput. Log. 14(4), 27:1–27:33 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lambek, J.: Cut elimination for classical bilinear logic. Fundam. Inform. 22(1/2), 53–67 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Maddux, R.: Relation Algebras. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  8. Montague, R.: The proper treatment of quantification in ordinary English. In: Hintikka, J., Moravcsik, J.M.E., Suppes, P. (eds.) Approaches to Natural Language, pp. 221–242. Reidel, Dordrecht (1973)

    Chapter  Google Scholar 

  9. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  10. Pinkal, M.: Logic and Lexicon: The Semantics of the Indefinite. Kluwer, Dordrecht (1995)

    Book  Google Scholar 

  11. Poesio, M.: Semantic ambiguity and perceived ambiguity. In: van Deemter, K., Peters, S. (eds.) Semantic Ambiguity and Underspecification, pp. 159–201. CSLI Publications, Stanford (1994)

    Google Scholar 

  12. Restall, G.: An Introduction to Substructural Logics. Routledge, New York (2008)

    MATH  Google Scholar 

  13. Sennet, A.: Ambiguity. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Spring 2016 edn. Metaphysics Research Lab, Stanford University (2016)

    Google Scholar 

  14. Wurm, C., Lichte, T.: The proper treatment of linguistic ambiguity in ordinary algebra. In: Foret, A., Morrill, G., Muskens, R., Osswald, R., Pogodalla, S. (eds.) FG 2015-2016. LNCS, vol. 9804, pp. 306–322. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53042-9_18

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wurm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wurm, C. (2018). The Logic of Ambiguity: The Propositional Case. In: Foret, A., Muskens, R., Pogodalla, S. (eds) Formal Grammar . FG 2017. Lecture Notes in Computer Science(), vol 10686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56343-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56343-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56342-7

  • Online ISBN: 978-3-662-56343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics