Skip to main content

Advantages of Constituency: Computational Perspectives on Samoan Word Prosody

  • Conference paper
  • First Online:
Formal Grammar (FG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10686))

Included in the following conference series:

  • 424 Accesses

Abstract

In this paper, we computationally implement and compare grammars of Samoan stress patterns that refer to feet and that refer only to syllables in Karttunen’s finite state formalization of Optimality Theory, and in grammars that directly state restrictions on surface stress patterns. The grammars are defined and compared in the high-level language of xfst to engage closely with specific linguistic proposals. While succinctness (size of the grammar) is not affected by referring to feet in the direct grammars, in the OT formalism, the grammar with feet is clearly more succinct. Moreover, a striking difference between the direct and OT grammars is that the OT grammars suffer from scaling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Some computational work has defined phonological patterns in terms of tiers [6, 9, 30] from autosegmental theory [12], but tiers aren’t properly nested like constituents, e.g., it’s generally assumed that feet don’t straddle prosodic words.

  2. 2.

    Because they are defined with non-identity transductions, the foot-based “grammars” are not grammars as defined by Formal Language Theory. But the phonological literature calls phonological transductions—input-output mappings from underlying forms to surface forms—like these “grammars”, and we’ll follow that convention.

  3. 3.

    The foot-based accounts also introduce (, ), and X as symbols, where X is an unparsed syllable, but: (i) it’s not clear these should be included in the alphabet since they come in only in the calculation of stress, (ii) if they are included, they make a negligible difference.

  4. 4.

    This ignores [47]’s evidence from LLLLL loan words showing that an initial weak-strong-weak (WSW) pattern can occur if the first vowel in the word is epenthetic.

  5. 5.

    We set up the initial generation of stress patterns like Gen in Standard OT [36, Sects. 2.2, 5.2.3.3] for the direct accounts as well as the OT accounts. We do this for convenience; we could also generate in some other way for the direct accounts.

  6. 6.

    We assume that syllable splitting feet do not occur [15, Sect. 5.6.2, p. 121].

  7. 7.

    LSmoDirFt can also be composed with a transduction that replaces W in unparsed syllables with X, to match notation for the OT footed account in Sect. 2.4.

  8. 8.

    HL-final sequences are allowed in [17]’s acceptor for Fijian stress (http://phonology.cogsci.udel.edu/dbs/stress/language.php?id=109), based on [15]’s basic description of Fijian stress, but [15, p. 145, Sect. 6.1.5.2]’s more detailed description suggests that they should not be accepted.

  9. 9.

    All OTSoft input and output files are in the github repository.

  10. 10.

    But there’s an inconsistency in [27]’s definitions of Parse; it should be defined as \(\tilde{\,}\textsf {\$["X["];}\) and not \(\tilde{\,}\textsf {[\$"X["];}\) in Figs. 8 and 16.

  11. 11.

    We abbreviate ParseSyll as ParseS for space; see github repository for definitions of ParseSyllN for \(N>2\).

  12. 12.

    See the github code repository for definitions of No3Clash (61 symbols) and No4Clash (131 symbols) and the NoNLapse constraint family.

  13. 13.

    Although our accounts define the same transduction, that does not mean that the transducers LSmoDirFt, LSmoDirSyl, LSmoMonoFtOT are identical at the machine-level. While any finite-state acceptor can be determinized and minimized to a unique, canonical acceptor [21, Sect. 4.4], the same is not true for finite-state transducers. First, not all finite-state transducers are determinizable [40, p. 587]. Second, minimization of a finite-state transducer does not in general result in a unique transducer [34, p. 29].

  14. 14.

    See the github repository for graphs of the transducers defined for each of the four accounts.

References

  1. Allauzen, C., Riley, M.: A pushdown transducer extension for the OpenFst library. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381, pp. 66–77. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31606-7_6

    Chapter  Google Scholar 

  2. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst: A general and efficient weighted finite-state transducer library. In: Holub, J., Žd’árek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 11–23. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76336-9_3

    Chapter  Google Scholar 

  3. Bailey, T.: Nonmetrical constraints on stress. Ph.D. thesis, University of Minnesota (1995)

    Google Scholar 

  4. Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI, Stanford, CA (2003)

    Google Scholar 

  5. Berwick, R.C.: Mind the gap. In: Gallego, A., Ott, D. (eds.) 50 Years Later, MITWPL77, pp. 1–12. MIT, Cambridge, Massachusetts (2015)

    Google Scholar 

  6. Bird, S., Ellison, T.M.: One level phonology: autosegmental representations and rules as finite automata. Comput. Linguis. 20, 55–90 (1994)

    Google Scholar 

  7. Chomsky, N.: Three descriptions of language. IRE Trans. Inf. Theory 2(3), 113–124 (1956)

    Article  MATH  Google Scholar 

  8. Chomsky, N., Halle, M.: The Sound Pattern of English. The MIT Press, Cambridge (1968)

    Google Scholar 

  9. Eisner, J.: Efficient generation in primitive optimality theory. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics (1997)

    Google Scholar 

  10. Frank, R., Satta, G.: Optimality theory and the generative complexity of constraint violability. Comput. Linguist. 24(2), 307–315 (1998)

    MathSciNet  Google Scholar 

  11. Gainor, B., Lai, R., Heinz, J.: Computational characterizations of vowel harmony patterns and pathologies. In: Choi, J., et al. (eds.) WCCFL 29, pp. 63–71. Cascadilla Proceedings Project, Somerville, MA (2012)

    Google Scholar 

  12. Goldsmith, J.A.: Autosegmental phonology. Ph.D. thesis, MIT (1976)

    Google Scholar 

  13. Gordon, M.: A factorial typology of quantity insensitive stress. NLLT 20, 491–552 (2002)

    Google Scholar 

  14. Hartmanis, J.: On the succinctness of different representations of languages. SIAM J. Comput. 9, 114–120 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hayes, B.: Metrical Stress Theory. University of Chicago Press, Chicago (1995)

    Google Scholar 

  16. Hayes, B., Tesar, B., Zuraw, K.: Otsoft 2.4. Software package (2016). www.linguistics.ucla.edu/people/hayes/otsoft/

  17. Heinz, J.: On the role of locality in learning stress patterns. Phonology 26(02), 303–351 (2009)

    Article  Google Scholar 

  18. Heinz, J.: Learning long-distance phonotactics. LI 41(4), 623–661 (2010)

    Google Scholar 

  19. Heinz, J.: Computational phonology - part I: foundations. Lang. Linguist. Compass 5(4), 140–152 (2011)

    Article  MathSciNet  Google Scholar 

  20. Heinz, J.: The computational nature of phonological generalizations. In: Hyman, L.M., Plank, F. (eds.) Phonological typology. De Gruyter Mouton, Berlin/Boston (2018)

    Google Scholar 

  21. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Pearson Education, Boston (2007)

    MATH  Google Scholar 

  22. Hulden, M.: Finite state syllabification. In: Yli-Jyrä, A., Karttunen, L., Karhumäki, J. (eds.) FSMNLP 2005, pp. 120–131. Springer, Berlin (2006)

    Google Scholar 

  23. Hyde, B.: Non-finality and weight sensitivity. Phonology 24(2), 287–334 (2007)

    Article  Google Scholar 

  24. Johnson, C.D.: Formal aspects of phonological description. Mouton (1972)

    Google Scholar 

  25. Kager, R.: Rhythmic licensing theory: an extended typology. In: Proceedings of the 3rd Seoul International Conference on Phonology, pp. 5–31 (2005)

    Google Scholar 

  26. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Comput. Linguist. 20(3), 331–378 (1994)

    Google Scholar 

  27. Karttunen, L.: The proper treatment of optimality in computational phonology. In: FSMNLP 1998 (1998)

    Google Scholar 

  28. Kenstowicz, M.: Cyclic vs. non-cyclic constraint evaluation. Phonology 12, 397–436 (1995)

    Article  Google Scholar 

  29. Kiparsky, P.: Word formation and the lexicon. In: Ingemann, F. (ed.) Proceedings of the 1982 Mid-America Linguistics Conference, pp. 3–29. University of Kansas, Lawrence (1982)

    Google Scholar 

  30. Kornai, A.: Formal phonology. Ph.D. thesis, Stanford University (1991)

    Google Scholar 

  31. McCarthy, J.J.: OT constraints are categorical. Phonology 20(1), 75–138 (2003)

    Article  Google Scholar 

  32. McCarthy, J.J., Prince, A.S.: Generalized alignment. In: Booij, G., Van Marle, J. (eds.) Yearbook of Morphology, pp. 79–153. Springer, Dordrecht (1993). https://doi.org/10.1007/978-94-017-3712-8_4

    Google Scholar 

  33. Meyer, A., Fischer, M.: Economy of description by automata, grammars, and formal systems. In: SWAT 1971, pp. 188–191 (1971)

    Google Scholar 

  34. Mohri, M.: Finite-state transducers in language and speech processing. Comput. Linguist. 23, 1–42 (1997)

    MathSciNet  Google Scholar 

  35. Nespor, M., Vogel, I.: Prosodic Phonology. Foris Publications, Dordrecht (1986)

    Google Scholar 

  36. Prince, A., Smolensky, P.: Optimality theory: Constraint interaction in generative grammar. ROA version, 8/2002, Rutgers University Center for Cognitive Science (1993)

    Google Scholar 

  37. Prince, A., Smolensky, P.: Optimality Theory: Constraint Interaction in Generative Grammar. Blackwell Publishing, Malden (2004)

    Book  Google Scholar 

  38. Rasin, E., Katzir, R.: On evaluation metrics in Optimality Theory. LI (To appear)

    Google Scholar 

  39. Rissanen, J.: Stochastic Complexity in Statistical Inquiry Theory. World Scientific Publishing Co. Inc., River Edge (1989)

    MATH  Google Scholar 

  40. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009). Translated by Reuben Thomas edn.

    Book  MATH  Google Scholar 

  41. Salomaa, A.: Formal Languages. Academic Press, New York (1973)

    MATH  Google Scholar 

  42. Selkirk, E.: Prosodic domains in phonology: Sanskrit revisited. In: Aronoff, M., Keans, M.L. (eds.) Juncture. Anma Libri, Saratoga, California (1980)

    Google Scholar 

  43. Selkirk, E.O.: Phonology and Syntax. MIT Press, Cambridge (1986)

    Google Scholar 

  44. Stabler, E.P.: Two models of minimalist, incremental syntactic analysis. Top. Cogn. Sci. 5(3), 611–633 (2013)

    Article  Google Scholar 

  45. Wagner, M., Watson, D.G.: Experimental and theoretical advances in prosody: a review. Lang. Cogn. Processes 25, 905–945 (2010)

    Article  Google Scholar 

  46. Zuraw, K.: Prosodic domains for segmental processes?, June 2009. https://www.mcgill.ca/linguistics/files/linguistics/Handout_RevisedForMcGill.pdf

  47. Zuraw, K., Yu, K.M., Orfitelli, R.: The word-level prosody of Samoan. Phonology 31(2), 271–327 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine M. Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, K.M. (2018). Advantages of Constituency: Computational Perspectives on Samoan Word Prosody. In: Foret, A., Muskens, R., Pogodalla, S. (eds) Formal Grammar . FG 2017. Lecture Notes in Computer Science(), vol 10686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56343-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56343-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56342-7

  • Online ISBN: 978-3-662-56343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics