Skip to main content

Employing Spatial Indexing for Flexibility and Scalability in Brain Biopsy Planning

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2018

Part of the book series: Informatik aktuell ((INFORMAT))

  • 3049 Accesses

Zusammenfassung

Planning of deep brain tumor biopsy is a time intensive task and the result highly dependent on tumor position and patient individual anatomy. The decision on the best needle trajectory is generally based on expert knowledge on optimal entry points and angles as well as trajectory length and rigid rules in respect to avoidance of and safety margins to risk structures. The increasing availability of more detailed data on brain anatomy further increases the complexity of the planning task. However, current computer supported planning systems generally work with fixed rules and a limited set of structures at risk. We propose BrainXPlore, a visual analytics based planning tool allowing neurosurgeon to interactively explore and refine the space of possible trajectories in the context of different quality measures and to define custom rules. To ensure interactivity and performance even for a high number of anatomical structures, we employ a spatial index allowing to access distance information for trajectories in real time. We evaluated BrainXPlore on real brain biopsy planning tasks and conclude that our system can decrease the time needed for biopsy planning and aid novice users in their decision-making process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Zombori G, Rodionov R, Nowell M, et al. A computer assisted planning system for the placement of sEEG electrodes in the treatment of epilepsy. Proc IPCAI. 2014; p. 118–127.

    Google Scholar 

  2. Essert C, Haegelen C, Jannin P. Automatic computation of electrodes trajectory for deep brain stimulation. Proc MIAR. 2010; p. 149–158.

    Google Scholar 

  3. Zelmann R, Bériault S, Mok K, et al. Automatic optimization of depth electrode trajectory planning. In: Workshop on Clinical Image-Based Procedures. Springer; 2013. p. 99–107.

    Google Scholar 

  4. Gao C, Chen L, Hou B, et al. Precise and semi-automatic puncture trajectory planning in craniofacial surgery: A prototype study. Proc BMEI. 2014; p. 617–622.

    Google Scholar 

  5. Herghelegiu P, Manta V, Perin R, et al. Biopsy planner: visual analysis for needle pathway planning in deep seated brain tumor biopsy. Comput Graph Forum. 2012;31(3):1085–1094. Presented at EuroVis 2012.

    Google Scholar 

  6. Amunts K. Human Brain Project: Aufbau eines multimodalen Gehirnatlas. Dtsch Arztebl Int. 2017;114(37):[26].

    Google Scholar 

  7. Orringer DA, Golby A, Jolesz F. Neuronavigation in the surgical management of brain tumors: current and future trends. Exp Rev Med Dev. 2012;9(5):491–500.

    Google Scholar 

  8. Bruckner S, Šoltészová V, Gröller E, et al. BrainGazer: visual queries for neurobiology research. IEEE Trans Vis Comput Graph. 2009 Nov;15(6):1497–1504.

    Google Scholar 

  9. Reuter M, Schmansky NJ, Rosas HD, et al. Within-Subject template estimation for unbiased longitudinal image analysis. NeuroImage. 2012;61(4):1402–1418.

    Google Scholar 

  10. Beyer J, Hadwiger M, Wolfsberger S, et al. High-Quality multimodal volume rendering for preoperative planning of neurosurgical interventions. Trans Vis Comput Graph. 2007;13(6):1696–1703.

    Google Scholar 

  11. Mastmeyer A, Fortmeier D, Handels H. Evaluation of direct haptic 4D volume rendering of partially segmented data for liver puncture simulation. Sci Report. 2017;7(1):671.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Pezenka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pezenka, L., Wolfsberger, S., Bühler, K. (2018). Employing Spatial Indexing for Flexibility and Scalability in Brain Biopsy Planning. In: Maier, A., Deserno, T., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2018. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56537-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56537-7_45

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56536-0

  • Online ISBN: 978-3-662-56537-7

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics