Zusammenfassung
During a neurosurgical procedure, the exposed brain undergoes an elastic deformation caused by numerous factors. This deformation, also known as brain shift, greatly affects the accuracy of neuronavigation systems. Non-rigid registration methods based on point matching algorithms are frequently used to compensate for intraoperative brain shift, especially when anatomical structures such as cerebral vascular tree are available. In this work, we introduce a pipeline to compensate for the volumetric brain deformation with Cone Beam CT (CBCT) image data. Point matching algorithms are combined with Spline-based transforms for this purpose. The initial result of different combination is evaluated with synthetical image data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Literatur
Hill DLG, Maurer CR, Maciunas RJ, et al. Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery. 1998;43(3):514–526.
Bayer S, Maier A, Ostermeier M, et al. Intraoperative imaging modalities and compensation for brain shift in tumor Resection Surgery. Int J Biomed Imaging. 2017;2017:18.
Chui H, Rangarajan A. A new point matching algorithm for non-rigid registration. Comput Vis Image Underst. 2003;89(2):114 – 141.
Myronenko A, Song X. Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell. 2010;32(12):2262–2275.
Bookstein FL. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell. 1989;11(6):567–585.
Rueckert D, Sonoda LI, Hayes C, et al. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999 Aug;18(8):712–721.
Bayer S, Maier A, Ostermeier M, et al. Generation of synthetic Image Data for the Evaluation of Brain Shift Compensation Methods. Proc IGIC. 2017.
Frangi AF, Niessen WJ, Vincken KL, et al. Multiscale vessel enhancement filtering. Proc MICCAI. 1998; p. 130–137.
Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–66.
Lee TC, Kashyap RL, Chu CN. Building skeleton models via 3-D medial surface axis thinning algorithms. Comput Vis Graph Image Process. 1994;56(6):462 – 478.
Yuille AL, Grzywacz NM. A mathematical analysis of the motion coherence theory. Int J Comput Vis. 1989 Jun;3(2):155–175.
Christensen G, Geng X, G Kuhl J, et al.. Introduction to the non-rigid image registration evaluation project (NIREP); 2006.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer-Verlag GmbH Deutschland
About this paper
Cite this paper
Bayer, S. et al. (2018). Preliminary Study Investigating Brain Shift Compensation using 3D CBCT Cerebral Vascular Images. In: Maier, A., Deserno, T., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2018. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56537-7_48
Download citation
DOI: https://doi.org/10.1007/978-3-662-56537-7_48
Published:
Publisher Name: Springer Vieweg, Berlin, Heidelberg
Print ISBN: 978-3-662-56536-0
Online ISBN: 978-3-662-56537-7
eBook Packages: Computer Science and Engineering (German Language)