Skip to main content

Salient Object Detection Based on the Fusion of Foreground Coarse Extraction and Background Prior

  • Chapter
  • First Online:
  • 1014 Accesses

Part of the book series: Lecture Notes in Computer Science ((TEDUTAIN,volume 10790))

Abstract

In order to obtain more refined salient object detection results, firstly, the coarse salient regions are extracted from the bottom-up, the coarse saliency map contains local map, frequency prior map and global color distribution map, which are more in accord with the rules of biological psychology. Then, an algorithm is proposed to measure the background prior quality by using three indexes, namely, salient expectation, local contrast and global contrast. Finally, the weighted algorithm is designed according to the prior quality to improve the saliency, so that the saliency prior and the saliency detection results are more accurate. Compared with 9 state-of-the-art algorithms on the 2 benchmark datasets of ECSSD and MSRA 10k, the proposed algorithm highlights salient regions, reduces noise, and is more in line with human visual perception, and reflects the excellence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang, W., Zhang, Y., Li, J.: High-level background prior based salient object detection. J. Vis. Commun. Image Representation 48, 432–441 (2017)

    Article  Google Scholar 

  2. Ren, Z.X., Gao, S.H., Chia, L.T., et al.: Region-based saliency detection and its application in object recognition. IEEE Trans. Circ. Syst. Video Technol. 24(5), 769–779 (2014)

    Article  Google Scholar 

  3. Guo, C.L., Zhang, L.M.: A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans. Image Process. 19(1), 185–198 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, C., Wu, X., Wang, B., et al.: Video saliency detection using dynamic fusion of spatial-temporal features in complex background with disturbance. J. Comput. Aided Des. Comput. Graph. 28(5), 802–812 (2016)

    Google Scholar 

  5. Li, A., She, X.C., Sun, Q.: Color image quality assessment combining saliency and FSIM. Proc. SPIE. Bellingham Soc. Photo Opt. Instrum. Eng. 8878, 88780I–88780I-5 (2013)

    Google Scholar 

  6. Qin, C.C., Zhang, G.P., Zhou, Y.C., et al.: Integration of the saliency based seed extraction and random walks for image segmentation. Neurocomputing 129, 378–391 (2014)

    Article  Google Scholar 

  7. Cheng, M.M., Mitra, N.J., Huang, X.L., et al.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2015)

    Article  Google Scholar 

  8. Achanta, R., Hemami, S.S., Estrada, F.V., et al.: Frequency-tuned salient region detection. In: Proceedings of the Computer Vision and Pattern Recognition, Los Alamitos, pp. 1597–1604. IEEE Computer Society Press (2009)

    Google Scholar 

  9. Liu, T., Yuan, Z.J., Sun, J., et al.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2011)

    Article  Google Scholar 

  10. Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_3

    Chapter  Google Scholar 

  11. Rasolzadeh, B., Tavakoli Targhi, A., Eklundh, J.-O.: An attentional system combining top-down and bottom-up influences. In: Paletta, L., Rome, E. (eds.) WAPCV 2007. LNCS (LNAI), vol. 4840, pp. 123–140. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77343-6_8

    Chapter  Google Scholar 

  12. Tian, H., Fang, Y., Zhao, Y., et al.: Salient region detection by fusing bottom-up and top-down features extracted from a single image. IEEE Trans. Image Process. 23(10), 4389–4398 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tong, N., Lu, H.C., Zhang, Y., et al.: Salient object detection via global and local cues. Pattern Recogn. 48(10), 3258–3267 (2015)

    Article  Google Scholar 

  14. Wang, J.P., Lu, H.C., Li, X.H., et al.: Saliency detection via background and foreground seed selection. Neurocomputing 152, 359–368 (2015)

    Article  Google Scholar 

  15. Li, S., Lu, H.C., Lin, Z., et al.: Adaptive metric learning for saliency detection. IEEE Trans. Image Process. 24(11), 3321–3331 (2015)

    Article  MathSciNet  Google Scholar 

  16. Huo, L., Jiao, L.C., Wang, S., et al.: Saliency detection with color attributes. Pattern Recogn. 49, 162–173 (2016)

    Article  Google Scholar 

  17. Frintrop, S., Werner, T., Garcia, G.M.: Traditional saliency reloaded: a good old model in new shape. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Piscataway, pp. 82–90. IEEE Computer Society (2015)

    Google Scholar 

  18. Achanta, R., Shaji, A., Smith, K., et al.: SLIC super pixels compared to state-of-the-art super pixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  19. Yan, Q., Xu, L., Shi, J., et al.: Hierarchical saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, pp. 1155–1162. IEEE Computer Society Press (2013)

    Google Scholar 

  20. Li, X., Li, Y., Shen, C.H., et al.: Contextual hypergraph modeling for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, Los Alamitos, pp. 3328–3335. IEEE Computer Society Press (2013)

    Google Scholar 

  21. Lou, J., Ren, M.W., Wang, H.: Regional principal color based saliency detection. PloS One 9(11), e112475 (2014)

    Article  Google Scholar 

  22. Zhang, Q., Lin, J., Tao, Y., et al.: Salient object detection via color and texture cues. Neurocomputing 243, 35–48 (2017)

    Article  Google Scholar 

  23. Zhang, Q., Liu, Y., Zhu, S., Han, J.: Salient object detection based on super-pixel clustering and unified low-rank representation. Comput. Vis. Image Underst. 161, 51–64 (2017)

    Article  Google Scholar 

  24. Liu, Q., Hong, X., Zou, B., et al.: Hierarchical contour closure-based holistic salient object detection. IEEE Trans. Image Process. 26(9), 4537–4552 (2017)

    Article  MathSciNet  Google Scholar 

  25. Song, H., Liu, Z., Du, H., et al.: Depth-aware salient object detection and segmentation via multiscale discriminative saliency fusion and bootstrap learning. IEEE Trans. Image Process. 26(9), 4204–4216 (2017)

    Article  MathSciNet  Google Scholar 

  26. Yan, X., Wang, Y., Song, Q., Dai, K.: Salient object detection via boosting object-level distinctiveness and saliency refinement. J. Vis. Commun. Image Representation 48, 224–237 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “National Natural Science Foundation of China (No. 61300170)” and “Anhui province higher education to enhance the general project plan of Provincial Natural Science Research (No. TSKJ2014B11)”. The authors wish to thank the Education Department of Anhui Province for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingkang Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gu, L., Pan, Z. (2018). Salient Object Detection Based on the Fusion of Foreground Coarse Extraction and Background Prior. In: Pan, Z., Cheok, A., Müller, W. (eds) Transactions on Edutainment XIV. Lecture Notes in Computer Science(), vol 10790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56689-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56689-3_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56688-6

  • Online ISBN: 978-3-662-56689-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics