Skip to main content

Symbolic Reasoning Methods in Rewriting Logic and Maude

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10944))

Abstract

Rewriting logic is both a logical framework where many logics can be naturally represented, and a semantic framework where many computational systems and programming languages, including concurrent ones, can be both specified and executed. Maude is a declarative specification and programming language based on rewriting logic. For reasoning about the logics and systems represented in the rewriting logic framework symbolic methods are of great importance. This paper discusses various symbolic methods that address crucial reasoning needs in rewriting logic, how they are supported by Maude and other symbolic engines, and various applications that these methods and engines make possible. Because of the generality of rewriting logic, these methods are widely applicable: they can be used in many areas and can provide useful reasoning components for other reasoning engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a very general formulation of convergence, including conditional equations E, see [84].

  2. 2.

    In some cases, the algebra of constructors may have the more general form \(T_{\varOmega /E_{\varOmega } \uplus B_{\varOmega }}\). For example, the data elements may be sets, which, together with axioms \(B_{\varOmega }\) of associativity and commutativity (AC) of set union, may also have an idempotency equation in \(E_{\varOmega }\) which is applied modulo AC to put all set expressions in normal form. All I say applies also to this more general case, but tree automata and/or pattern methods may be more complex in the presence of both axioms and equations for constructors.

  3. 3.

    The same remarks as in Footnote 2 apply here: the signature of constructors could more generally be a convergent theory of the form \((\varOmega , E_{\varOmega } \uplus B_{\varOmega })\). Unification modulo \(E_{\varOmega }\uplus B_{\varOmega }\) can still be performed in practice to intersect constrained patterns because in many cases \((\varOmega , E_{\varOmega } \uplus B_{\varOmega })\) has the finite variant property (see Sect. 2.2).

  4. 4.

    To avoid wasteful computations we can further make the binary operator \(\wedge \) frozen in its second argument, which forbids rewriting under that second argument. See [95] for a detailed explanation of frozen arguments and [29] for its use in narrowing.

  5. 5.

    Here “standard” should be taken with a grain of salt, since extra variables with sorts in \(\varSigma _{0}\) are allowed in the rule’s righthand side v. These extra variables will be mapped by \(\theta \) to new, fresh variables.

  6. 6.

    The notation \(\{A\} \mathcal {R} \{B\}\), and the relation to Hoare logic are explained in [125].

References

  1. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: Partial evaluation of order-sorted equational programs modulo axioms. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 3–20. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4_1

    Chapter  Google Scholar 

  2. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: A modular order-sorted equational generalization algorithm. Inf. Comput. 235, 98–136 (2014)

    Article  MathSciNet  Google Scholar 

  3. Alpuente, M., Escobar, S., Iborra, J.: Termination of narrowing revisited. Theor. Comput. Sci. 410(46), 4608–4625 (2009)

    Article  MathSciNet  Google Scholar 

  4. Alpuente, M., Escobar, S., Iborra, J.: Modular termination of basic narrowing and equational unification. Log. J. IGPL 19(6), 731–762 (2011)

    Article  MathSciNet  Google Scholar 

  5. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Trans. Comput. Log. 10(1), 4:1–4:51 (2009)

    Article  MathSciNet  Google Scholar 

  6. Armando, A., Castellini, C., Giunchiglia, E.: SAT-based procedures for temporal reasoning. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp. 97–108. Springer, Heidelberg (2000). https://doi.org/10.1007/10720246_8

    Chapter  Google Scholar 

  7. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Inf. Comput. 183(2), 140–164 (2003)

    Article  MathSciNet  Google Scholar 

  8. Arusoaie, A., Lucanu, D., Rusu, V.: Symbolic execution based on language transformation. Comput. Lang. Syst. Struct. 44, 48–71 (2015)

    MATH  Google Scholar 

  9. Audemard, G., Bertoli, P., Cimatti, A., Korniłowicz, A., Sebastiani, R.: A SAT based approach for solving formulas over Boolean and linear mathematical propositions. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 195–210. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45620-1_17

    Chapter  Google Scholar 

  10. Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning. Elsevier (1999)

    Chapter  Google Scholar 

  11. Baader, F., Siekmann, J.H.: Unification theory. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 2, pp. 41–126. Oxford University Press (1994)

    Google Scholar 

  12. Bae, K.: Rewriting-based model checking methods. Ph.D. thesis, University of Illinois at Urbana-Champaign (2014)

    Google Scholar 

  13. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-state systems using narrowing. In: Rewriting Techniques and Applications (RTA 2013). LIPIcs, vol. 21, pp. 81–96. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

    Google Scholar 

  14. Bae, K., Meseguer, J.: Infinite-state model checking of LTLR formulas using narrowing. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 113–129. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12904-4_6

    Chapter  Google Scholar 

  15. Bae, K., Meseguer, J.: Predicate abstraction of rewrite theories. In: Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp. 61–76. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08918-8_5

    Chapter  Google Scholar 

  16. Bae, K., Meseguer, J.: Model checking linear temporal logic of rewriting formulas under localized fairness. Sci. Comput. Program. 99, 193–234 (2015)

    Article  Google Scholar 

  17. Bae, K., Rocha, C.: Guarded terms for rewriting modulo SMT. In: Proença, J., Lumpe, M. (eds.) FACS 2017. LNCS, vol. 10487, pp. 78–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68034-7_5

    Chapter  Google Scholar 

  18. Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas by incremental translation to SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 236–249. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_18

    Chapter  Google Scholar 

  19. Basin, D., Clavel, M., Meseguer, J.: Rewriting logic as a metalogical framework. ACM Trans. Comput. Log. 5, 528–576 (2004)

    Article  MathSciNet  Google Scholar 

  20. Basin, D., Dreier, J., Sasse, R.: Automated symbolic proofs of observational equivalence. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the 2015 ACM SIGSAC Conference on Computer and Communications Security, pp. 1144–1155. ACM (2015)

    Google Scholar 

  21. Bidoit, M., Mosses, P.D. (eds.): CASL User Manual - Introduction to Using the Common Algebraic Specification Language. LNCS, vol. 2900. Springer, Heidelberg (2004). https://doi.org/10.1007/b11968

    Book  MATH  Google Scholar 

  22. Bonacina, M.P., Echenim, M.: On variable-inactivity and polynomial \(\cal{T}\)-satisfiability procedures. J. Log. Comput. 18(1), 77–96 (2008)

    Article  MathSciNet  Google Scholar 

  23. Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.E.: ELAN from a rewriting logic point of view. Theor. Comput. Sci. 285, 155–185 (2002)

    Article  MathSciNet  Google Scholar 

  24. Boyer, R., Moore, J.: A Computational Logic. Academic Press, Cambridge (1980)

    MATH  Google Scholar 

  25. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theor. Comput. Sci. 360(1–3), 386–414 (2006)

    Article  MathSciNet  Google Scholar 

  26. Bulychev, P.E., Kostylev, E.V., Zakharov, V.A.: Anti-unification algorithms and their applications in program analysis. In: Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) PSI 2009. LNCS, vol. 5947, pp. 413–423. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11486-1_35

    Chapter  Google Scholar 

  27. Bürckert, H.-J. (ed.): A Resolution Principle for a Logic with Restricted Quantifiers. LNCS, vol. 568. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-55034-8

    Book  MATH  Google Scholar 

  28. Chadha, R., Ciobâcă, Ş., Kremer, S.: Automated verification of equivalence properties of cryptographic protocols. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 108–127. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2_6

    Chapter  Google Scholar 

  29. Cholewa, A., Escobar, S., Meseguer, J.: Constrained narrowing for conditional equational theories modulo axioms. Sci. Comput. Program. 112, 24–57 (2015)

    Article  Google Scholar 

  30. Cholewa, A., Meseguer, J., Escobar, S.: Variants of variants and the finite variant property. Technical report, CS Dept. University of Illinois at Urbana-Champaign, February 2014. http://hdl.handle.net/2142/47117

  31. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

    Book  MATH  Google Scholar 

  32. Cohn, A.G.: A more expressive formulation of many sorted logic. J. Autom. Reason. 3(2), 113–200 (1987)

    Article  MathSciNet  Google Scholar 

  33. Cohn, A.G.: Taxonomic reasoning with many-sorted logics. Artif. Intell. Rev. 3(2–3), 89–128 (1989)

    Google Scholar 

  34. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007). http://www.grappa.univ-lille3.fr/tata, Accessed 12 Oct 2007

  35. Comon, H.: Equational formulas in order-sorted algebras. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 674–688. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032066

    Chapter  Google Scholar 

  36. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3_22

    Chapter  Google Scholar 

  37. van Deursen, A., Heering, J., Klint, P.: Language Prototyping: An Algebraic Specification Approach. World Scientific, Singapore (1996)

    Book  Google Scholar 

  38. Dreier, J., Duménil, C., Kremer, S., Sasse, R.: Beyond subterm-convergent equational theories in automated verification of stateful protocols. In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 117–140. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_6

    Chapter  Google Scholar 

  39. Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R.: Automated unbounded verification of stateful cryptographic protocols with exclusive OR. In: Accepted at Computer Security Foundations (CSF) (2018)

    Google Scholar 

  40. Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Adding decision procedures to SMT solvers using axioms with triggers. J. Autom. Reason. 56(4), 387–457 (2016)

    Article  MathSciNet  Google Scholar 

  41. Durán, F., Eker, S., Escobar, S., Martí-Oliet, N., Meseguer, J., Talcott, C.: Associative unification and symbolic reasoning modulo associativity in Maude. In: Preproceedings of WRLA 2018, Thessaloniki, Greece, April 2018. (Distributed in Electronic Form by the ETAPS 2018 Organizers). Proceedings version to appear in LNCS

    Google Scholar 

  42. Durán, F., Meseguer, J., Rocha, C.: Proving ground confluence of equational specifications modulo axioms. Technical report, CS Dept., University of Illinois at Urbana-Champaign, March 2018. http://hdl.handle.net/2142/99548. Shorter version to appear in Proceedings of the WRLA 2018. Springer LNCS

  43. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories. J. Algebraic Log. Program. 81, 816–850 (2012)

    Article  MathSciNet  Google Scholar 

  44. Echenim, M., Peltier, N.: An instantiation scheme for satisfiability modulo theories. J. Autom. Reason. 48(3), 293–362 (2012)

    Article  MathSciNet  Google Scholar 

  45. Erbatur, S., Escobar, S., Kapur, D., Liu, Z., Lynch, C.A., Meadows, C., Meseguer, J., Narendran, P., Santiago, S., Sasse, R.: Asymmetric unification: a new unification paradigm for cryptographic protocol analysis. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 231–248. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_16

    Chapter  Google Scholar 

  46. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03829-7_1

    Chapter  MATH  Google Scholar 

  47. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 52–68. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4_5

    Chapter  MATH  Google Scholar 

  48. Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: State space reduction in the Maude-NRL protocol analyzer. Inf. Comput. 238, 157–186 (2014)

    Article  MathSciNet  Google Scholar 

  49. Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73449-9_13

    Chapter  Google Scholar 

  50. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J. Algebraic Log. Program. 81, 898–928 (2012)

    Article  MathSciNet  Google Scholar 

  51. Farzan, A., Chen, F., Meseguer, J., Roşu, G.: Formal analysis of Java programs in JavaFAN. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 501–505. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9_46

    Chapter  Google Scholar 

  52. Fay, M.: First-order unification in an equational theory. In: Proceedings of the 4th Workshop on Automated Deduction, pp. 161–167 (1979)

    Google Scholar 

  53. Filliâtre, J.-C., Owre, S., Rue*B, H., Shankar, N.: ICS: integrated Canonizer and solver? In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 246–249. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4_22

    Chapter  Google Scholar 

  54. Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof explication. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 355–367. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_34

    Chapter  Google Scholar 

  55. Frisch, A.M.: The substitutional framework for sorted deduction: fundamental results on hybrid reasoning. Artif. Intell. 49(1–3), 161–198 (1991)

    Article  MathSciNet  Google Scholar 

  56. Futatsugi, K., Diaconescu, R.: CafeOBJ Report. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  57. Gallagher, J.P.: Tutorial on specialisation of logic programs. In: Proceedings of the 1993 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM 1993, pp. 88–98. ACM, New York (1993)

    Google Scholar 

  58. Gallier, J.H., Snyder, W.: Complete sets of transformations for general E-unification. Theor. Comput. Sci. 67(2&3), 203–260 (1989)

    Article  MathSciNet  Google Scholar 

  59. Garavel, H., Tabikh, M.A., Arrada, I.S.: Benchmarking implementations of term rewriting and pattern matching in algebraic, functional, and object-oriented languages. In: Preproceedings of WRLA 2018, Thessaloniki, Greece, April 2018. (Distributed in electronic form by the ETAPS 2018 Organizers). Proceedings version to appear in LNCS

    Google Scholar 

  60. Goguen, J., Meseguer, J.: Equality, types, modules and (why not?) generics for logic programming. J. Log. Program. 1(2), 179–210 (1984)

    Article  MathSciNet  Google Scholar 

  61. Goguen, J., Meseguer, J.: Unifying functional, object-oriented and relational programming with logical semantics. In: Shriver, B., Wegner, P. (eds.) Research Directions in Object-Oriented Programming, pp. 417–477. MIT Press, Cambridge (1987)

    Google Scholar 

  62. Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105, 217–273 (1992)

    Article  MathSciNet  Google Scholar 

  63. Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.P.: Introducing OBJ. In: Goguen, J., Malcolm, G. (eds.) Software Engineering with OBJ: Algebraic Specification in Action, pp. 3–167. Kluwer, Dordrecht (2000)

    Chapter  Google Scholar 

  64. González-Burgueño, A., Santiago, S., Escobar, S., Meadows, C., Meseguer, J.: Analysis of the IBM CCA security API protocols in Maude-NPA. In: Chen, L., Mitchell, C. (eds.) SSR 2014. LNCS, vol. 8893, pp. 111–130. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14054-4_8

    Chapter  Google Scholar 

  65. González-Burgueño, A., Santiago, S., Escobar, S., Meadows, C., Meseguer, J.: Analysis of the PKCS#11 API using the Maude-NPA tool. In: Chen, L., Matsuo, S. (eds.) SSR 2015. LNCS, vol. 9497, pp. 86–106. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27152-1_5

    Chapter  Google Scholar 

  66. Gutiérrez, R., Meseguer, J.: Variant-based decidable satisfiability in initial algebras with predicates. To appear in Proceedings of LOPSTR 2017. Springer LNCS 2018

    Google Scholar 

  67. Gutiérrez, R., Meseguer, J.: Variant-based decidable satisfiability in initial algebras with predicates. Technical report, University of Illinois at Urbana-Champaign, June 2017. http://hdl.handle.net/2142/96264

  68. Haxthausen, A.E.: Order-sorted algebraic specifications with higher-order functions. Theor. Comput. Sci. 183(2), 157–185 (1997)

    Article  MathSciNet  Google Scholar 

  69. Hendrix, J., Ohsaki, H., Viswanathan, M.: Propositional tree automata. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 50–65. Springer, Heidelberg (2006). https://doi.org/10.1007/11805618_5

    Chapter  Google Scholar 

  70. Hendrix, J., Meseguer, J.: Order-sorted equational unification revisited. Electr. Notes Theor. Comput. Sci. 290, 37–50 (2012)

    Article  Google Scholar 

  71. Hendrix, J., Meseguer, J., Ohsaki, H.: A sufficient completeness checker for linear order-sorted specifications modulo axioms. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 151–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771_14

    Chapter  Google Scholar 

  72. Hendrix, J.D.: Decision procedures for equationally based reasoning. Ph.D. thesis, University of Illinois at Urbana-Champaign (2008). http://hdl.handle.net/2142/10967

  73. Hullot, J.-M.: Canonical forms and unification. In: Bibel, W., Kowalski, R. (eds.) CADE 1980. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10009-1_25

    Chapter  Google Scholar 

  74. Jouannaud, J.-P., Kirchner, C., Kirchner, H.: Incremental construction of unification algorithms in equational theories. In: Diaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 361–373. Springer, Heidelberg (1983). https://doi.org/10.1007/BFb0036921

    Chapter  Google Scholar 

  75. Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM J. Comput. 15, 1155–1194 (1986)

    Article  MathSciNet  Google Scholar 

  76. Katelman, M., Keller, S., Meseguer, J.: Rewriting semantics of production rule sets. J. Log. Algebraic Program. 81(7–8), 929–956 (2012)

    Article  MathSciNet  Google Scholar 

  77. Kirchner, C.: Order-sorted equational unification. Technical report 954, INRIA Lorraine & LORIA, Nancy, France (1988)

    Google Scholar 

  78. Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.K.: On superposition-based satisfiability procedures and their combination. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 594–608. Springer, Heidelberg (2005). https://doi.org/10.1007/11560647_39

    Chapter  Google Scholar 

  79. Kitzelmann, E., Schmid, U.: Inductive synthesis of functional programs: an explanation based generalization approach. J. Mach. Learn. Res. 7, 429–454 (2006)

    MathSciNet  MATH  Google Scholar 

  80. Kutsia, T., Levy, J., Villaret, M.: Anti-unification for unranked terms and hedges. In: Schmidt-Schauß, M. (ed.) Proceedings of the 22nd International Conference on Rewriting Techniques and Applications, RTA 2011. LIPIcs, Novi Sad, Serbia, 30 May–1 June 2011, vol. 10, pp. 219–234. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

    Google Scholar 

  81. Lassez, J.L., Marriott, K.: Explicit representation of terms defined by counter examples. J. Autom. Reason. 3(3), 301–317 (1987)

    Article  Google Scholar 

  82. Lu, J., Mylopoulos, J., Harao, M., Hagiya, M.: Higher order generalization and its application in program verification. Ann. Math. Artif. Intell. 28(1–4), 107–126 (2000)

    Article  MathSciNet  Google Scholar 

  83. Lucanu, D., Rusu, V., Arusoaie, A., Nowak, D.: Verifying reachability-logic properties on rewriting-logic specifications. In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 451–474. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23165-5_21

    Chapter  MATH  Google Scholar 

  84. Lucas, S., Meseguer, J.: Normal forms and normal theories in conditional rewriting. J. Log. Algebric Methods Program. 85(1), 67–97 (2016)

    Article  MathSciNet  Google Scholar 

  85. Lynch, C., Morawska, B.: Automatic decidability. In: Proceedings of the LICS 2002, p. 7. IEEE Computer Society (2002)

    Google Scholar 

  86. Lynch, C., Tran, D.-K.: Automatic decidability and combinability revisited. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 328–344. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_22

    Chapter  Google Scholar 

  87. Martí-Oliet, N., Meseguer, J.: Inclusions and subtypes II: higher-order case. J. Log. Comput. 6, 541–572 (1996)

    Article  MathSciNet  Google Scholar 

  88. Martí-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn, pp. 1–87. Kluwer Academic Publishers, Dordrecht (2002). First published as SRI Technical report SRI-CSL-93-05, August 1993

    MATH  Google Scholar 

  89. Martí-Oliet, N., Palomino, M., Verdejo, A.: Rewriting logic bibliography by topic: 1990–2011. J. Log. Algebric Program. 81(7–8), 782–815 (2012). https://doi.org/10.1016/j.jlap.2012.06.001

    Article  MathSciNet  MATH  Google Scholar 

  90. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_48

    Chapter  Google Scholar 

  91. Meseguer, J.: The temporal logic of rewriting: a gentle introduction. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 354–382. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68679-8_22

    Chapter  Google Scholar 

  92. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its application to the verification of cryptographic protocols. J. High.-Order Symb. Comput. 20(1–2), 123–160 (2007)

    Article  Google Scholar 

  93. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992)

    Article  MathSciNet  Google Scholar 

  94. Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-64299-4_26

    Chapter  Google Scholar 

  95. Meseguer, J.: Twenty years of rewriting logic. J. Algebraic Log. Program. 81, 721–781 (2012)

    Article  MathSciNet  Google Scholar 

  96. Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. Theor. Comput. Sci. 672, 1–35 (2017)

    Article  MathSciNet  Google Scholar 

  97. Meseguer, J.: Generalized rewrite theories and coherence completion. Technical report, University of Illinois Computer Science Department, March 2018. http://hdl.handle.net/2142/99546. Shorter version to appear in Proceedings of WRLA 2018, Springer LNCS

  98. Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program. 154, 3–41 (2018)

    Article  Google Scholar 

  99. Meseguer, J., Goguen, J., Smolka, G.: Order-sorted unification. J. Symb. Comput. 8, 383–413 (1989)

    Article  MathSciNet  Google Scholar 

  100. Meseguer, J., Rosu, G.: The rewriting logic semantics project: a progress report. Inf. Comput. 231, 38–69 (2013)

    Article  MathSciNet  Google Scholar 

  101. Meseguer, J., Skeirik, S.: Equational formulas and pattern operations in initial order-sorted algebras. Formal Asp. Comput. 29(3), 423–452 (2017)

    Article  MathSciNet  Google Scholar 

  102. Mogensen, T.Æ.: Glossary for partial evaluation and related topics. High.-Order Symbol. Comput. 13(4), 355–368 (2000)

    Article  Google Scholar 

  103. Mosses, P.D. (ed.): Casl Reference Manual. The Complete Documentation of the Common Algebraic Specification Language. LNCS, vol. 2960. Springer, Heidelberg (2004). https://doi.org/10.1007/b96103

    Book  MATH  Google Scholar 

  104. de Moura, L., Rueß, H.: Lemmas on demand for satisfiability solvers. In: Proceedings of the Fifth International Symposium on the Theory and Applications of Satisfiability Testing (SAT 2002), May 2002

    Google Scholar 

  105. Muggleton, S.: Inductive logic programming: issues, results and the challenge of learning language in logic. Artif. Intell. 114(1–2), 283–296 (1999)

    Article  Google Scholar 

  106. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

    Article  Google Scholar 

  107. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)

    Article  MathSciNet  Google Scholar 

  108. Pfenning, F.: Unification and anti-unification in the calculus of constructions. In: Proceedings, Sixth Annual IEEE Symposium on Logic in Computer Science, Amsterdam, The Netherlands, 15–18 July 1991, pp. 74–85. IEEE Computer Society (1991)

    Google Scholar 

  109. Plotkin, G.: A note on inductive generalization. In: Machine Intelligence, vol. 5, pp. 153–163. Edinburgh University Press (1970)

    Google Scholar 

  110. Popplestone, R.: An experiment in automatic induction. In: Machine Intelligence, vol. 5, pp. 203–215. Edinburgh University Press (1969)

    Google Scholar 

  111. Reynolds, J.: Transformational systems and the algebraic structure of atomic formulas. Mach. Intell. 5, 135–151 (1970)

    MathSciNet  MATH  Google Scholar 

  112. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. Assoc. Comput. Mach. 12, 23–41 (1965)

    Article  MathSciNet  Google Scholar 

  113. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 314–328. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22944-2_22

    Chapter  Google Scholar 

  114. Rocha, C.: Symbolic reachability analysis for rewrite theories. Ph.D. thesis, University of Illinois at Urbana-Champaign (2012)

    Google Scholar 

  115. Rocha, C., Meseguer, J.: Mechanical analysis of reliable communication in the alternating bit protocol using the Maude invariant analyzer tool. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 603–629. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54624-2_30

    Chapter  Google Scholar 

  116. Rocha, C., Meseguer, J., Muñoz, C.A.: Rewriting modulo SMT and open system analysis. J. Log. Algebraic Methods Program. 86, 269–297 (2017)

    Article  MathSciNet  Google Scholar 

  117. Rosu, G., Serbanuta, T.: An overview of the K semantic framework. J. Log. Algebraic Program. 79(6), 397–434 (2010)

    Article  MathSciNet  Google Scholar 

  118. Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis of Diffie-Hellman protocols and advanced security properties. In: Proceedings of the CSF 2012, pp. 78–94. IEEE (2012)

    Google Scholar 

  119. Schmidt, B., Sasse, R., Cremers, C., Basin, D.: Automated verification of group key agreement protocols. In: Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP 2014, pp. 179–194. IEEE Computer Society, Washington, D.C. (2014)

    Google Scholar 

  120. Schmidt-Schauss, M.: Unification in many-sorted equational theories. In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 538–552. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16780-3_118

    Chapter  Google Scholar 

  121. Schmidt-Schauß, M. (ed.): Computational Aspects of an Order-Sorted Logic with Term Declarations. LNCS, vol. 395. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0024065

    Book  MATH  Google Scholar 

  122. Shostak, R.E.: Deciding combinations of theories. J. ACM 31(1), 1–12 (1984)

    Article  MathSciNet  Google Scholar 

  123. Siekmann, J.H.: Unification theory. J. Symb. Comput. 7(3/4), 207–274 (1989)

    Article  MathSciNet  Google Scholar 

  124. Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. J. Log. Algebric Methods Program. 96, 81–110 (2018)

    Article  MathSciNet  Google Scholar 

  125. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for rewrite theories. Technical report, University of Illinois Computer Science Department, March 2017. http://hdl.handle.net/2142/95770. Shorter version to appear in Proceedings of LOPSTR 2107, Springer LNCS 2018

  126. Slagle, J.R.: Automated theorem-proving for theories with simplifiers commutativity, and associativity. J. ACM 21(4), 622–642 (1974)

    Article  MathSciNet  Google Scholar 

  127. Smolka, G., Aït-Kaci, H.: Inheritance hierarchies: semantics and unification. J. Symb. Comput. 7(3/4), 343–370 (1989)

    Article  MathSciNet  Google Scholar 

  128. Smolka, G., Nutt, W., Goguen, J., Meseguer, J.: Order-sorted equational computation. In: Nivat, M., Aït-Kaci, H. (eds.) Resolution of Equations in Algebraic Structures, vol. 2, pp. 297–367. Academic Press, Cambridge (1989)

    Google Scholar 

  129. Snyder, W.: A Proof Theory for General Unification. Birkhäuser, Boston (1991)

    Book  Google Scholar 

  130. Ştefănescu, A., Ciobâcă, Ş., Mereuta, R., Moore, B.M., Şerbănută, T.F., Roşu, G.: All-path reachability logic. In: Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp. 425–440. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08918-8_29

    Chapter  Google Scholar 

  131. Stefanescu, A., Park, D., Yuwen, S., Li, Y., Rosu, G.: Semantics-based program verifiers for all languages. In: Proceedings of the OOPSLA 2016, pp. 74–91. ACM (2016)

    Google Scholar 

  132. Stehr, M.O.: CINNI - a generic calculus of explicit substitutions and its application to \(\lambda \)-, \(\sigma \)- and \(\pi \)-calculi. ENTCS 36, 70–92 (2000). Proceedings of the 3rd International Workshop on Rewriting Logic and Its Applications

    MathSciNet  Google Scholar 

  133. Stehr, M.-O., Meseguer, J.: Pure type systems in rewriting logic: specifying typed higher-order languages in a first-order logical framework. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to Formal Methods. LNCS, vol. 2635, pp. 334–375. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39993-3_16

    Chapter  Google Scholar 

  134. Stehr, M.-O., Meseguer, J., Ölveczky, P.C.: Rewriting logic as a unifying framework for Petri nets. In: Ehrig, H., Padberg, J., Juhás, G., Rozenberg, G. (eds.) Unifying Petri Nets. LNCS, vol. 2128, pp. 250–303. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45541-8_9

    Chapter  MATH  Google Scholar 

  135. Tushkanova, E., Giorgetti, A., Ringeissen, C., Kouchnarenko, O.: A rule-based system for automatic decidability and combinability. Sci. Comput. Program. 99, 3–23 (2015)

    Article  Google Scholar 

  136. Viry, P.: Equational rules for rewriting logic. Theor. Comput. Sci. 285, 487–517 (2002)

    Article  MathSciNet  Google Scholar 

  137. Walther, C.: A mechanical solution of Schubert’s steamroller by many-sorted resolution. Artif. Intell. 26(2), 217–224 (1985)

    Article  MathSciNet  Google Scholar 

  138. Yang, F., Escobar, S., Meadows, C., Meseguer, J., Narendran, P.: Theories of homomorphic encryption, unification, and the finite variant property. In: Proceedings of the PPDP 2014, pp. 123–133. ACM (2014)

    Google Scholar 

  139. Yang, F., Escobar, S., Meadows, C.A., Meseguer, J., Santiago, S.: Strand spaces with choice via a process algebra semantics. In: Proceedings of the 18th International Symposium on Principles and Practice of Declarative Programming (PPDP), Edinburgh, United Kingdom, 5–7 September 2016, pp. 76–89. ACM (2016)

    Google Scholar 

Download references

Acknowledgments

I thank the organizers of WoLLIC for kindly giving me the opportunity of presenting these ideas in Bogotá. As the references make clear, these ideas have been developed in joint work with a large number of collaborators and former or present students, and in dialogue with many other colleagues. I cannot mention them all and apologize in advance for this; but I would like to mention and cordially thank in particular: María Alpuente, Kyungmin Bae, Andrew Cholewa, Angel Cuenca-Ortega, Francisco Durán, Steven Eker, Santiago Escobar, Raúl Gutiérrez, Joseph Hendrix, Dorel Lucanu, Salvador Lucas, Narciso Martí-Oliet, Catherine Meadows, César A. Muñoz, Hitoshi Ohsaki, Camilo Rocha, Grigore Rosu, Vlad Rusu, Sonia Santiago, Ralf Sasse, Andrei Stefanescu, Carolyn Talcott, Prasanna Thati, and Fan Yang. This work has been partially supported by NRL under contract number N00173-17-1-G002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Meseguer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meseguer, J. (2018). Symbolic Reasoning Methods in Rewriting Logic and Maude. In: Moss, L., de Queiroz, R., Martinez, M. (eds) Logic, Language, Information, and Computation. WoLLIC 2018. Lecture Notes in Computer Science(), vol 10944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57669-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57669-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57668-7

  • Online ISBN: 978-3-662-57669-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics