Skip to main content

Towards Large-Scale Optimization of Iterated Prisoner Dilemma Strategies

  • Chapter
  • First Online:
Transactions on Computational Collective Intelligence XXXII

Abstract

The Iterated Prisoner’s Dilemma (IPD) game is a one of the most popular subjects of study in game theory. Numerous experiments have investigated many properties of this game over the last decades. However, topics related to the simulation scale did not always play a significant role in such experimental work. The main contribution of this paper is the optimization of IPD strategies performed in a distributed actor-based computing and simulation environment. Besides showing the scalability and robustness of the framework, we also dive into details of some key simulations, analyzing the most successful strategies obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Classic values for the payoff matrix are \(Temptation=5\), \(Reward=3\), \(Punishment=1\) and \(Sucker=0\).

  2. 2.

    http://www.cyfronet.krakow.pl/computers/15226,artykul,prometheus.html.

  3. 3.

    https://slurm.schedmd.com/.

References

  1. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (2006)

    MATH  Google Scholar 

  2. Rapoport, A., Chammah, A.M.: Prisoner’s Dilemma: A Study in Conflict and Cooperation. University of Michigan Press (1965)

    Google Scholar 

  3. Roth, A., Murnighan, J.: Equilibrium behavior and repeated play of the prisoner’s dilemma. J. Math. Psychol. 17(2), 189–198 (1978)

    Article  MathSciNet  Google Scholar 

  4. Fogel, D.: Evolving behaviors in the iterated prisoner’s dilemma. Evol. Comput. 1, 77–97 (1993)

    Article  Google Scholar 

  5. Kendall, G., Yao, X., Chong, S.: The Iterated Prisoners’ Dilemma: 20 Years on. World Scientific, Singapore (2006)

    MATH  Google Scholar 

  6. Van Veelen, M., Garcia, J., Rand, D., Nowak, M.: Direct reciprocity in structured populations. Proc. Natl. Acad. Sci. 109(25), 9929–9934 (2012)

    Article  Google Scholar 

  7. Peleteiro, A., Burguillo, J.C., Chong, S.Y.: Exploring indirect reciprocity in complex networks using coalitions and rewiring. In: Proceedings of the 2014 International Conference on Autonomous Agents and Multi-agent Systems, AAMAS 2014, Richland, SC, pp. 669–676. International Foundation for Autonomous Agents and Multiagent Systems (2014)

    Google Scholar 

  8. Wellman, M.: Putting the agent in agent-based modeling. Auton. Agent. Multi-Agent Syst. 30, 1175–1189 (2016)

    Article  Google Scholar 

  9. Wiedenbeck, B., Wellman, M.: Scaling simulation-based game analysis through deviation- preserving reduction. In: Proceedings of 11th International Conference on Autonomous Agents and Multi-Agent Systems. ACM (2012)

    Google Scholar 

  10. Faber, L., Pietak, K., Byrski, A., Kisiel-Dorohinicki, M.: Agent-based simulation in AgE framework. In: Byrski, A., Oplatková, Z., Carvalho, M., Kisiel-Dorohinicki, M. (eds.) Advances in Intelligent Modelling and Simulation: Simulation Tools and Applications, vol. 416, pp. 55–83. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28888-3_3

    Chapter  Google Scholar 

  11. Kisiel-Dorohinicki, M.: Agent-based models and platforms for parallel evolutionary algorithms. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 646–653. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6_84

    Chapter  Google Scholar 

  12. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artificial intelligence. In: Proceedings of the 3rd International Joint Conference on Artificial Intelligence. IJCAI 1973, San Francisco, CA, USA, pp. 235–245. Morgan Kaufmann Publishers Inc. (1973)

    Google Scholar 

  13. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge (1986)

    Google Scholar 

  14. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based programming. Theoret. Comput. Sci. 410(2), 202–220 (2009)

    Article  MathSciNet  Google Scholar 

  15. Snijders, T.A., van de Bunt, G.G., Steglich, C.E.: Introduction to stochastic actor-based models for network dynamics. Soc. Netw. 32(1), 44–60 (2010). Dynamics of Social Networks

    Article  Google Scholar 

  16. Esposito, A., Loia, V.: Integrating concurrency control and distributed data into workflow frameworks: an actor model perspective. In: 2000 IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 2110–2114 (2000)

    Google Scholar 

  17. Skiba, G., et al.: Flexible asynchronous simulation of iterated prisoner’s dilemma based on actor model. Simul. Model. Pract. Theory 83, 75–92 (2018)

    Article  Google Scholar 

  18. Peleteiro, A., Burguillo, J.C., Luck, M., Arcos, J.L., Rodígruez-Aguilar, J.A.: Using reputation and adaptive coalitions to support collaboration in competitive environments. Eng. Appl. Artif. Intell. 45, 325–338 (2015)

    Article  Google Scholar 

  19. Peleteiro, A., Burguillo, J.C., Bazzan, A.L.C.: How coalitions enhance cooperation in the IPD over complex networks. In: 2012 Third Brazilian Workshop on Social Simulation, pp. 68–74, October 2012

    Google Scholar 

  20. Peleteiro, A., Burguillo, J.C., Arcos, J.L., Rodriguez-Aguilar, J.A.: Fostering cooperation through dynamic coalition formation and partner switching. ACM Trans. Auton. Adapt. Syst. 9(1), 1:1–1:31 (2014)

    Article  Google Scholar 

  21. Huberman, B., Glance, N.: Evolutionary games and computer simulations. Proc. Natl. Acad. Sci. USA 90, 7716–7718 (1993)

    Article  Google Scholar 

  22. Grilo, C., Correia, L.: What makes spatial prisoner’s dilemma game sensitive to asynchronism? In: Proceedings of 11th International Conference on the Simulation and Synthesis of Living Systems, Alife XI. MIT (2008)

    Google Scholar 

  23. Grilo, C., Correia, L.: The influence of asynchronous dynamics in the spatial prisoner’s dilemma game. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 362–371. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69134-1_36

    Chapter  Google Scholar 

  24. Newth, D.: Asynchronous iterated prisoner’s dilemma. Adapt. Behav. 17(2), 175–183 (2009)

    Article  Google Scholar 

  25. Newth, D., Cornforth, D.: Asynchronous spatial evolutionary games. Biosystems 95(2), 120–129 (2009)

    Article  Google Scholar 

  26. Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.: Agent based modelling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev. 24, 13–33 (2017)

    Article  Google Scholar 

  27. Collier, N., North, M.: Parallel agent-based simulation with repast for high performance computing. Simulation 89(10), 1215–1235 (2013)

    Article  Google Scholar 

  28. Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D., Greenough, C.: Exploitation of high performance computing in the flame agent-based simulation framework. In: 2012 IEEE 14th International Conference on High Performance Computing and Communication and 2012 IEEE 9th International Conference on Embedded Software and Systems, pp. 538–545, June 2012

    Google Scholar 

  29. Suryanarayanan, V., Theodoropoulos, G., Lees, M.: PDES-MAS: distributed simulation of multi-agent systems. Procedia Comput. Sci. 18, 671–681 (2013)

    Article  Google Scholar 

  30. Wittek, P., Rubio-Campillo, X.: Scalable agent-based modelling with cloud HPC resources for social simulations. In: 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, pp. 355–362, December 2012

    Google Scholar 

  31. Allen, J.: Effective Akka. O’Reilly Media, Sebastopol (2013)

    Google Scholar 

  32. Piccolo, E., Squillero, G.: Adaptive opponent modelling for the iterated prisoner’s dilemma. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 836–841, June 2011

    Google Scholar 

  33. Hein, O., Schwind, M., König, W.: Scale-free networks. Wirtschaftsinformatik 48(4), 267–275 (2006)

    Article  Google Scholar 

  34. Axelrod, R., Axelrod, R.M.: The Evolution of Cooperation, vol. 5145. Basic Books, New York (1984)

    MATH  Google Scholar 

  35. Boyd, R., Lorberbaum, J.P.: No pure strategy is evolutionarily stable in the repeated prisoner’s dilemma game. Nature 327(6117), 58–59 (1987)

    Article  Google Scholar 

  36. Friedman, J.W.: A non-cooperative equilibrium for supergames. Rev. Econ. Stud. 38(1), 1–12 (1971)

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by AGH University of Science and Technology Statutory Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Byrski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Starzec, G., Starzec, M., Byrski, A., Kisiel-Dorohinicki, M., Burguillo, J.C., Lenaerts, T. (2019). Towards Large-Scale Optimization of Iterated Prisoner Dilemma Strategies. In: Nguyen, N., Kowalczyk, R., Hernes, M. (eds) Transactions on Computational Collective Intelligence XXXII. Lecture Notes in Computer Science(), vol 11370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58611-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58611-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58610-5

  • Online ISBN: 978-3-662-58611-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics