Skip to main content

Machine Learning for Process-X: A Taxonomy

  • Conference paper
  • First Online:
Machine Learning for Cyber Physical Systems

Part of the book series: Technologien für die intelligente Automation ((TIA,volume 11))

Abstract

Application of machine learning techniques for data-driven modeling of value-creating processes promises significant economic benefits. These applications include process monitoring, process configuration, process control and process optimization (process-X). However, similarities and distinguishing features between established approaches to process-X compared to machine learning are often unclear. This paper sheds light on this issue by deriving a taxonomy of process-X approaches that sharpens the role of machine learning in these applications. Moreover, the taxonomy and discussion identifies future research directions for applied machine learning in cyber-physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. J.S. Oakland. Statistical Process Control. Butterworth-Heinemann, 1986.

    Google Scholar 

  • 2. G.E.P. Box and K.B. Wilson. On the experimental attainment of optimum conditions. J. R. Stat. Soc., 13(1):1–45, 1951.

    MathSciNet  MATH  Google Scholar 

  • 3. D.R. Jones. A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 21(4):345–383, 2001.

    Article  MathSciNet  Google Scholar 

  • 4. D.C. Montgomery. Design and Analysis of Experiments: Response surface method and designs. John Wiley & Sons, 2005.

    Google Scholar 

  • 5. K. Steenstrup, R.L. Sallam, L. Eriksen, and S.F. Jacobson. Industrial Analytics Revolutionizes Big Data in the Digital Business. Technical report, 2014.

    Google Scholar 

  • 6. K.L. Lueth, C. Patsioura, Z.D. Williams, and Z.Z. Kermani. Industrial Analytics – The current state of data analytics usage in industrial companies, 2016.

    Google Scholar 

  • 7. A. Mangal and N. Kumar. Using big data to enhance the bosch production line performance: A Kaggle challenge. In IEEE Intern. Conf. on Big Data, pages 2029–2035, 2016.

    Google Scholar 

  • 8. A. Unger, W. Sextro, S. Althoff, T. Meyer, K. Neumann, R.F. Reinhart, M. Broekelmann, K. Guth, and D. Bolowski. Data-driven Modeling of the Ultrasonic Softening Effect for Robust Copper Wire Bonding. In Intern. Conf. on Integrated Power Systems, 2014.

    Google Scholar 

  • 9. C. Atkinson, M. Traver, T. Long, and E. Hanzevack. Predicting smoke. InTech, pages 32–35, 2002.

    Google Scholar 

  • 10. F. Gustafsson, M. Drevö, U. Forssell, M. Löfgren, N. Persson, and H. Quicklund. Virtual Sensors of Tire Pressure and Road Friction. Technical report, 2001.

    Google Scholar 

  • 11. L. Fortuna, S. Graziani, A. Rizzo, and M.G. Xibilia. Soft Sensors for Monitoring and Control of Industrial Processes. Springer, 2007.

    Google Scholar 

  • 12. S. Wrede, C. Emmerich, R. Grünberg, A. Nordmann, A. Swadzba, and J. Steil. A user study on kinesthetic teaching of redundant robots in task and configuration space. Journal of Human-Robot Interaction, 2(1):56–81, 2013.

    Article  Google Scholar 

  • 13. S.K. Lahiri and N.M. Khalfe. Soft sensor development and optimization of a commercial petro-chemical plant integrating support vector regression and genetic algorithm. Chemical Industry & Chemical Engineering, 15(3):175–187, 2009.

    Article  Google Scholar 

  • 14. T. Meyer, A. Unger, S. Althoff, W. Sextro, M. Broekelmann, M. Hunstig, and K. Guth. Reliable manufacturing of heavy copper wire bonds using online parameter adaptation. In IEEE Electronic Components and Technology Conference, pages 622–628, 2016.

    Google Scholar 

  • 15. W. Aswolinskiy, R.F. Reinhart, and J.J. Steil. Modelling of parametrized processes via regression in the model space of neural networks. Neurocomputing, 2017.

    Google Scholar 

  • 16. Z.-S. Hou and Z. Wang. From model-based control to data-driven control: Survey, classification and perspective. Information Sciences, 235:3–35, 2013.

    Article  MathSciNet  Google Scholar 

  • 17. I. Bratko. Modelling operator’s skill by machine learning. In International Conference on Information Technology Interfaces, pages 23–30, 2000.

    Google Scholar 

  • 18. F. Oestersötebier, P. Traphöner, R.F. Reinhart, S. Wessels, and A. Trächtler. Design and implementation of intelligent control software for a dough kneader. Procedia Technology, 26:473–482, 2016.

    Article  Google Scholar 

  • M. Borzykh, U. Damerow, C. Henke, A. Trächtler, and W. Homberg. Model-Based Approach for Self-correcting Strategy Design for Manufacturing of Small Metal Parts. In Digital Product and Process Development, pages 320–329, 2013.

    Google Scholar 

  • 20. J.J.E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, 1991.

    Google Scholar 

  • 21. Hassan K. Khalil. Nonlinear Systems. Macmillan Publishing Company, 1992.

    Google Scholar 

  • 22. K. J. Astrom. Adaptive control around 1960. In IEEE Conference on Decision and Control, volume 3, pages 2784–2789 vol.3, 1995.

    Google Scholar 

  • 23. Jun Nakanishi and Stefan Schaal. Feedback error learning and nonlinear adaptive control. Neural Networks, 17(10):1453–1465, 2004.

    Article  Google Scholar 

  • 24. D.A. Bristow, M. Tharayil, and A.G. Alleyne. A survey of iterative learning control. IEEE Control Systems, 26(3):96–114, 2006.

    Google Scholar 

  • 25. J.F. Queisser, K. Neumann, M. Rolf, R.F. Reinhart, and J.J. Steil. An active compliant control mode for interaction with a pneumatic soft robot. In IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems, pages 573–579, 2014.

    Google Scholar 

  • 26. R.F. Reinhart, Z. Shareef, and J.J. Steil. Hybrid analytical and data-driven modeling for feed-forward robot control. Sensors, 17(2), 2017.

    Article  Google Scholar 

  • 27. M. Rolf, J.J. Steil, and M. Gienger. Online goal babbling for rapid bootstrapping of inverse models in high dimensions. In IEEE Intern. Conf. on Development and Learning, pages 1–8, 2011.

    Google Scholar 

  • 28. R.F. Reinhart. Autonomous exploration of motor skills by skill babbling. Autonomous Robots, (7):1–17, 2017.

    Article  Google Scholar 

  • 29. R.S. Sutton, A.G. Barto, and R.J. Williams. Reinforcement learning is direct adaptive optimal control. IEEE Control Systems, 12(2):19–22, 1992.

    Google Scholar 

  • 30. S. Bhasin. Reinforcement Learning and Optimal Control Methods for Uncertain Nonlinear Systems. PhD thesis, University of Florida, 2011.

    Google Scholar 

  • 31. E.L. Snelson. Flexible and efficient Gaussian process models for machine learning. PhD thesis, University College London, 2007.

    Google Scholar 

  • 32. L. Paninski. Design of experiments via information theory. In Advances in Neural Information Processing Systems, pages 1319–1326, 2004.

    Google Scholar 

  • 33. D.A. Cohn, Z. Ghahramani, and M.I. Jordan. Active learning with statistical models. Journal of Artificial Intelligence Research, (4):129–145, 1996.

    Article  Google Scholar 

  • 34. P. Jackson. Introduction to expert systems. Addison-Wesley, 1986.

    Google Scholar 

  • 35. R.F. Reinhart. Industrial Data Science – Data Science in der industriellen Anwendung. Industrie 4.0 Management, (32):27–30, 2016.

    Google Scholar 

  • 36. R.F. Reinhart, A. Kühn, and R. Dumitrescu. Schichtenmodell für die Entwicklung von Data Science Anwendungen im Maschinen- und Anlagenbau. In Wissenschaftsforum Intelligente Technische Systeme, pages 321–334, 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reinhart, F., von Enzberg, S., Kühn, A., Dumitrescu, R. (2020). Machine Learning for Process-X: A Taxonomy. In: Beyerer, J., Maier, A., Niggemann, O. (eds) Machine Learning for Cyber Physical Systems. Technologien für die intelligente Automation, vol 11. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59084-3_4

Download citation

Publish with us

Policies and ethics