Skip to main content

Uniform Labelled Calculi for Conditional and Counterfactual Logics

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11541))

Abstract

Lewis’s counterfactual logics are a class of conditional logics that are defined as extensions of classical propositional logic with a two-place modal operator expressing conditionality. Labelled proof systems are proposed here that capture in a modular way Burgess’s preferential conditional logic \( \mathbb {PCL}\), Lewis’s counterfactual logic \( \mathbb {V}\), and their extensions. The calculi are based on preferential models, a uniform semantics for conditional logics introduced by Lewis. The calculi are analytic, and their completeness is proved by means of countermodel construction. Due to termination in root-first proof search, the calculi also provide a decision procedure for the logics.

This work was partially supported by the Academy of Finland research project no. 1308664 and by the project TICAMORE ANR-16-CE91-0002-01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The definition can be extended to the propositional formulas of the language in the standard way [17].

  2. 2.

    The proofs of termination and completeness for systems with Uniformity and Absoluteness can be given adopting the reformulation of the calculi from Remark 1. The proofs for the current versions of the calculi would be unnecessarily complex.

  3. 3.

    The saturation conditions for the other propositional rules are standard [20].

  4. 4.

    Observe that \( \mathsf {Repl}\) does not introduce new labels; however, it could introduce new links between the nodes of the graph. In the presence of \( \mathsf {Repl}\) the structure generated by R is a graph; otherwise, it is a tree.

  5. 5.

    In case of centering it is convenient to define worlds as equivalence classes, to account for formulas \( x=y \). Thus, \( [x] = \{ y \mid x=y \text { occurs in } \downarrow \varGamma \} \) and \( W^c = \{[x] \mid y \text { occurs in } \downarrow \varGamma \cup \downarrow \varDelta \} \). Centering follows from the saturation condition (\( \mathsf {C}\)).

  6. 6.

    In case of centering, we also need to show that if \( [x] \vDash _\rho A \) and \( y \in [x] \), then \( [y] \vDash _\rho A \), and that if \( [x] \vDash _\rho A \) then x : A occurs in \( \downarrow \varGamma \). The proof follows from admissibility of \( \mathsf {Repl}\) in its generalized form [20].

  7. 7.

    Refer to [7] for complexity results for conditional logics.

  8. 8.

    The Limit Assumption states that there are no infinite descending \( \leqslant _x \)-chains.

References

  1. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequent calculi for conditional logics. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 14–27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-8_2

    Chapter  MATH  Google Scholar 

  2. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequent calculi for normal conditional logics. J. Logic Comput. 26(1), 7–50 (2013)

    Article  MathSciNet  Google Scholar 

  3. Alexandroff, P.: Diskrete Räume. Mat.Sb. (NS) 2(3), 501–519 (1937)

    MATH  Google Scholar 

  4. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. Log. Found. Game Decis. Theory (LOFT 7) 3, 9–58 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Burgess, J.P.: Quick completeness proofs for some logics of conditionals. Notre Dame J. Formal Log. 22(1), 76–84 (1981)

    Article  MathSciNet  Google Scholar 

  6. Chen, J., Greco, G., Palmigiano, A., Tzimoulis, A.: Non normal logics: semantic analysis and proof theory. arXiv preprint arXiv:1903.04868 (2019)

    Chapter  Google Scholar 

  7. Friedman, N., Halpern, J.Y.: On the complexity of conditional logics. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) Principles of knowledge Representation and Reasoning: Proceedings of the Fourth International Conference (KR 1994), pp. 202–213. Morgan Kaufmann Pub. (1994)

    Google Scholar 

  8. Galles, D., Pearl, J.: An axiomatic characterization of causal counterfactuals. Found. Sci. 3(1), 151–182 (1998)

    Article  MathSciNet  Google Scholar 

  9. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-based conditional logics: PCL and its extensions. ACM Trans. Comput. Log. 10(3), 21 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Girlando, M.: On the proof theory of conditional logics. Ph.D. thesis, University of Helsinki (2019)

    Google Scholar 

  11. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Standard sequent calculi for Lewis’ logics of counterfactuals. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 272–287. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_18

    Chapter  MATH  Google Scholar 

  12. Girlando, M., Negri, S., Olivetti, N., Risch, V.: Conditional beliefs: from neighbourhood semantics to sequent calculus. Rev. Symb. Log. 11, 1–44 (2018)

    Article  MathSciNet  Google Scholar 

  13. Grahne, G.: Updates and counterfactuals. J. Log. Comput. 8(1), 87–117 (1998)

    Article  MathSciNet  Google Scholar 

  14. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

    Article  MathSciNet  Google Scholar 

  15. Lewis, D.K.: Counterfactuals. Blackwell, Oxford (1973)

    MATH  Google Scholar 

  16. Nalon, C., Pattinson, D.: A resolution-based calculus for preferential logics. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 498–515. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_33

    Chapter  Google Scholar 

  17. Negri, S.: Proof analysis in modal logic. J. Philos. Log. 34(5–6), 507 (2005)

    Article  MathSciNet  Google Scholar 

  18. Negri, S.: Proof theory for non-normal modal logics: the neighbourhood formalism and basic results. IFCoLog J. Log. Appl. 4, 1241–1286 (2017)

    Google Scholar 

  19. Negri, S., Olivetti, N.: A sequent calculus for preferential conditional logic based on neighbourhood semantics. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 115–134. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_9

    Chapter  Google Scholar 

  20. Negri, S., Sbardolini, G.: Proof analysis for Lewis counterfactuals. Rev. Symb. Log. 9(1), 44–75 (2016)

    Article  MathSciNet  Google Scholar 

  21. Poggiolesi, F.: Natural deduction calculi and sequent calculi for counterfactual logics. Studia Logica 104(5), 1003–1036 (2016)

    Article  MathSciNet  Google Scholar 

  22. Weiss, Y.: Frontiers of conditional logic. Ph.D. thesis, The Graduate Center, City University of New York (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Girlando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Girlando, M., Negri, S., Sbardolini, G. (2019). Uniform Labelled Calculi for Conditional and Counterfactual Logics. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2019. Lecture Notes in Computer Science(), vol 11541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59533-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59533-6_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59532-9

  • Online ISBN: 978-3-662-59533-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics