Skip to main content

Non Normal Logics: Semantic Analysis and Proof Theory

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11541))

  • 762 Accesses

Abstract

We introduce proper display calculi for basic monotonic modal logic, the conditional logic CK and a number of their axiomatic extensions. These calculi are sound, complete, conservative and enjoy cut elimination and subformula property. Our proposal applies the multi-type methodology in the design of display calculi, starting from a semantic analysis based on the translation from monotonic modal logic to normal bi-modal logic.

This research is supported by the NWO Vidi grant 016.138.314, the NWO Aspasia grant 015.008.054, and a Delft Technology Fellowship awarded to the third author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bílková, M., Greco, G., Palmigiano, A., Tzimoulis, A., Wijnberg, N.: The logic of resources and capabilities. Rev. Symb. Log. 11(2), 371–410 (2018)

    Article  MathSciNet  Google Scholar 

  2. Birkhoff, G., Lipson, J.: Heterogeneous algebras. J. Comb. Theory 8(1), 115–133 (1970)

    Article  MathSciNet  Google Scholar 

  3. Chellas, B.F.: Basic conditional logic. J. Philos. Log. 4(2), 133–153 (1975)

    Article  MathSciNet  Google Scholar 

  4. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)

    Book  Google Scholar 

  5. Conradie, W., Ghilardi, S., Palmigiano, A.: Unified correspondence. In: Baltag, A., Smets, S. (eds.) Johan van Benthem on Logic and Information Dynamics. OCL, vol. 5, pp. 933–975. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06025-5_36

    Chapter  Google Scholar 

  6. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for non-distributive logics. Ann. Pure Appl. Log. (2019, in press). ArXiv preprint arXiv:1603.08515

  7. Frittella, S., Greco, G., Kurz, A., Palmigiano, A.: Multi-type display calculus for propositional dynamic logic. J. Log. Comput. 26(6), 2067–2104 (2016)

    Article  MathSciNet  Google Scholar 

  8. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: Multi-type sequent calculi. In: Indrzejczak, A., et al. (eds.) Proceedings of Trends in Logic XIII, pp. 81–93 (2014)

    Google Scholar 

  9. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimic, V.: Multi-type display calculus for dynamic epistemic logic. J. Log. Comput. 26(6), 2017–2065 (2016)

    Article  MathSciNet  Google Scholar 

  10. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimic, V.: A proof-theoretic semantic analysis of dynamic epistemic logic. J. Log. Comput. 26(6), 1961–2015 (2016)

    Article  MathSciNet  Google Scholar 

  11. Frittella, S., Greco, G., Palmigiano, A., Yang, F.: A multi-type calculus for inquisitive logic. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 215–233. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52921-8_14

    Chapter  MATH  Google Scholar 

  12. Frittella, S., Palmigiano, A., Santocanale, L.: Dual characterizations for finite lattices via correspondence theory for monotone modal logic. JLC 27(3), 639–678 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Gabbay, D., Giordano, L., Martelli, A., Olivetti, N., Sapino, M.L.: Conditional reasoning in logic programming. J. Log. Program. 44(1–3), 37–74 (2000)

    Article  MathSciNet  Google Scholar 

  14. Gasquet, O., Herzig, A.: From classical to normal modal logics. In: Wansing, H. (ed.) Proof Theory of Modal Logic. APLS, vol. 2, pp. 293–311. Springer, Dordrecht (1996). https://doi.org/10.1007/978-94-017-2798-3_15

    Chapter  MATH  Google Scholar 

  15. Gehrke, M., Jónsson, B.: Bounded distributive lattice expansions. Mathematica Scandinavica, 13–45 (2004)

    Article  MathSciNet  Google Scholar 

  16. Greco, G., Jipsen, P., Manoorkar, K., Palmigiano, A., Tzimoulis, A.: Logics for rough concept analysis. In: Khan, M.A., Manuel, A. (eds.) ICLA 2019. LNCS, vol. 11600, pp. 144–159. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58771-3_14

    Chapter  Google Scholar 

  17. Greco, G., Liang, F., Manoorkar, K., Palmigiano, A.: Proper multi-type display calculi for rough algebras. ArXiv preprint arXiv:1808.07278 (2018)

  18. Greco, G., Liang, F., Moshier, M.A., Palmigiano, A.: Multi-type display calculus for semi De Morgan logic. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 199–215. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-2_14

    Chapter  MATH  Google Scholar 

  19. Greco, G., Liang, F., Palmigiano, A., Rivieccio, U.: Bilattice logic properly displayed. Fuzzy Sets Syst. 363, 138–155 (2018)

    Article  MathSciNet  Google Scholar 

  20. Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence as a proof-theoretic tool. J. Log. Comput. 28(7), 1367–1442 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Greco, G., Palmigiano, A.: Linear logic properly displayed. arXiv preprint arXiv:1611.04184 (2016)

  22. Greco, G., Palmigiano, A.: Lattice logic properly displayed. In: Kennedy, J., de Queiroz, R.J.G.B. (eds.) WoLLIC 2017. LNCS, vol. 10388, pp. 153–169. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55386-2_11

    Chapter  MATH  Google Scholar 

  23. Hansen, H.H.: Monotonic modal logics. Institute for Logic, Language and Computation (ILLC), University of Amsterdam (2003)

    Google Scholar 

  24. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I. Am. J. Math. 73(4), 891–939 (1951)

    Article  Google Scholar 

  25. Kracht, M., Wolter, F.: Normal monomodal logics can simulate all others. J. Symb. Log. 64(1), 99–138 (1999)

    Article  MathSciNet  Google Scholar 

  26. Lewis, D.: Counterfactuals. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  27. Manoorkar, K., Nazari, S., Palmigiano, A., Tzimoulis, A., Wijnberg, N.M.: Rough concepts (2018, Submitted)

    Google Scholar 

  28. Negri, S.: Proof theory for non-normal modal logics: the neighbourhood formalism and basic results. IFCoLog J. Log. Appl. 4, 1241–1286 (2017)

    Google Scholar 

  29. Nute, D.: Topics in Conditional Logic, vol. 20. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  30. Olivetti, N., Pozzato, G., Schwind, C.: A sequent calculus and a theorem prover for standard conditional logics. ACM Trans. Comput. Log. 8, 40–87 (2007)

    Article  MathSciNet  Google Scholar 

  31. Pauly, M.: A modal logic for coalitional power in games. JLC 12(1), 149–166 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Pauly, M., Parikh, R.: Game logic - an overview. Studia Logica 75(2), 165–182 (2003)

    Article  MathSciNet  Google Scholar 

  33. Tzimoulis, A.: Algebraic and proof-theoretic foundations of the logics for social behaviour. Ph.D. thesis. TU Delft (2018)

    Google Scholar 

  34. van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Studia Logica 99(1–3), 61 (2011)

    Article  MathSciNet  Google Scholar 

  35. Wansing, H.: Displaying Modal Logic, vol. 3. Springer, Heidelberg (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsheng Chen .

Editor information

Editors and Affiliations

Appendices

A Analytic Inductive Inequalities

In the present section, we specialize the definition of analytic inductive inequalities (cf. [20]) to the multi-type languages \(\mathcal {L}_{MT\nabla }\) and \(\mathcal {L}_{MT>}\) reported below.

figure ab

An order-type over \(n\in \mathbb {N}\) is an n-tuple \(\epsilon \in \{1, \partial \}^n\). If \(\epsilon \) is an order type, \(\epsilon ^\partial \) is its opposite order type; i.e. \(\epsilon ^\partial (i) = 1\) iff \(\epsilon (i)=\partial \) for every \(1 \le i \le n\). The connectives of the language above are grouped together into the families \(\mathcal {F}: = \mathcal {F}_{\mathsf {S}}\cup \mathcal {F}_{\mathsf {N}}\cup \mathcal {F}_{\text {MT}}\) and \(\mathcal {G}: = \mathcal {G}_{\mathsf {S}}\cup \mathcal {G}_{\mathsf {N}} \cup \mathcal {G}_{\text {MT}}\), defined as follows:

figure ac

For any \(f\in \mathcal {F}\) (resp. \(g\in \mathcal {G}\)), we let \(n_f\in \mathbb {N}\) (resp. \(n_g\in \mathbb {N}\)) denote the arity of f (resp. g), and the order-type \(\epsilon _f\) (resp. \(\epsilon _g\)) on \(n_f\) (resp. \(n_g\)) indicate whether the ith coordinate of f (resp. g) is positive (\(\epsilon _f(i) = 1\), \(\epsilon _g(i) = 1\)) or negative (\(\epsilon _f(i) = \partial \), \(\epsilon _g(i) = \partial \)).

Definition 8

(Signed Generation Tree). The positive (resp. negative) generation tree of any \(\mathcal {L}_\text {MT}\)-term s is defined by labelling the root node of the generation tree of s with the sign \(+\) (resp. −), and then propagating the labelling on each remaining node as follows: For any node labelled with \(\ell \in \mathcal {F}\cup \mathcal {G}\) of arity \(n_\ell \), and for any \(1\le i\le n_\ell \), assign the same (resp. the opposite) sign to its ith child node if \(\epsilon _\ell (i) = 1\) (resp. if \(\epsilon _\ell (i) = \partial \)). Nodes in signed generation trees are positive (resp. negative) if are signed \(+\) (resp. −).

For any term \(s(p_1,\ldots p_n)\), any order type \(\epsilon \) over n, and any \(1 \le i \le n\), an \(\epsilon \)-critical node in a signed generation tree of s is a leaf node \(+p_i\) with \(\epsilon (i) = 1\) or \(-p_i\) with \(\epsilon (i) = \partial \). An \(\epsilon \)-critical branch in the tree is a branch ending in an \(\epsilon \)-critical node. For any term \(s(p_1,\ldots p_n)\) and any order type \(\epsilon \) over n, we say that \(+s\) (resp. \(-s\)) agrees with \(\epsilon \), and write \(\epsilon (+s)\) (resp. \(\epsilon (-s)\)), if every leaf in the signed generation tree of \(+s\) (resp. \(-s\)) is \(\epsilon \)-critical. We will also write \(+s'\prec *s\) (resp. \(-s'\prec *s\)) to indicate that the subterm \(s'\) inherits the positive (resp. negative) sign from the signed generation tree \(*s\). Finally, we will write \(\epsilon (s') \prec *s\) (resp. \(\epsilon ^\partial (s') \prec *s\)) to indicate that the signed subtree \(s'\), with the sign inherited from \(*s\), agrees with \(\epsilon \) (resp. with \(\epsilon ^\partial \)).

Definition 9

(Good branch). Nodes in signed generation trees will be called \(\varDelta \)-adjoints, syntactically left residual (SLR), syntactically right residual (SRR), and syntactically right adjoint (SRA), according to the specification given in Table 1. A branch in a signed generation tree \(*s\), with \(*\in \{+, - \}\), is called a good branch if it is the concatenation of two paths \(P_1\) and \(P_2\), one of which may possibly be of length 0, such that \(P_1\) is a path from the leaf consisting (apart from variable nodes) only of PIA-nodes and \(P_2\) consists (apart from variable nodes) only of Skeleton-nodes.

figure ad
Table 1. Skeleton and PIA nodes.

Definition 10

(Analytic inductive inequalities). For any order type \(\epsilon \) and any irreflexive and transitive relation \(<_\varOmega \) on \(p_1,\ldots p_n\), the signed generation tree \(*s\) \((* \in \{-, + \})\) of an \(\mathcal {L}_{MT}\) term \(s(p_1,\ldots p_n)\) is analytic \((\varOmega , \epsilon )\)-inductive if

  1. 1.

    every branch of \(*s\) is good (cf. Definition 9);

  2. 2.

    for all \(1 \le i \le n\), every SRR-node occurring in any \(\epsilon \)-critical branch with leaf \(p_i\) is of the form \( \circledast (s, \beta )\) or \( \circledast (\beta , s)\), where the critical branch goes through \(\beta \) and

    1. (a)

      \(\epsilon ^\partial (s) \prec *s\) (cf. discussion before Definition 9), and

    2. (b)

      \(p_k <_{\varOmega } p_i\) for every \(p_k\) occurring in s and for every \(1\le k\le n\).

An inequality \(s \le t\) is analytic \((\varOmega , \epsilon )\)-inductive if the signed generation trees \(+s\) and \(-t\) are analytic \((\varOmega , \epsilon )\)-inductive. An inequality \(s \le t\) is analytic inductive if is analytic \((\varOmega , \epsilon )\)-inductive for some \(\varOmega \) and \(\epsilon \).

B Algorithmic Proof of Theorem 1

In what follows, we show that the correspondence results collected in Theorem 1 can be retrieved as instances of a suitable multi-type version of algorithmic correspondence for normal logics (cf. [5, 6]), hinging on the usual order-theoretic properties of the algebraic interpretations of the logical connectives, while admitting nominal variables of two sorts. For the sake of enabling a swift translation into the language of m-frames and c-frames, we write nominals directly as singletons, and, abusing notation, we quantify over the elements defining these singletons. These computations also serve to prove that each analytic structural rule is sound on the heterogeneous perfect algebras validating its correspondent axiom. In the computations relative to each analytic axiom, the line marked with \((\star )\) marks the quasi-inequality that interprets the corresponding analytic rule. This computation does not prove the equivalence between the axiom and the rule, since the variables occurring in each starred quasi-inequality are restricted rather than arbitrary. However, the proof of soundness is completed by observing that all ALBA rules in the steps above the marked inequalities are (inverse) Ackermann and adjunction rules, and hence are sound also when arbitrary variables replace (co-)nominal variables.

figure ae
figure af
figure ag
figure ah
figure ai
figure aj
figure ak
figure al
figure am
figure an
figure ao

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Greco, G., Palmigiano, A., Tzimoulis, A. (2019). Non Normal Logics: Semantic Analysis and Proof Theory. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2019. Lecture Notes in Computer Science(), vol 11541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59533-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59533-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59532-9

  • Online ISBN: 978-3-662-59533-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics