Skip to main content

A Methodology for Root-Causing In-field Attacks on Microfluidic Executions

  • Conference paper
  • First Online:
Transactions on Computational Science XXXV

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 11960))

Abstract

Recent research on security and trustworthiness of micro-fluidic biochips has exposed several backdoors in their established design flows that can lead to compromises in assay results. This is a serious concern, considering the fact that these biochips are now extensively used for clinical diagnostics in healthcare. In this paper, we propose a novel scheme for root-causing assay manipulation attacks for actuations on digital microfluidic biochips that manifest as errors after execution. In particular, we show how the presence of a functionally correct reaction sequence graph has a significant advantage in the micro-fluidic context for debugging errors resulting out of such attacks. Such a sequence graph is the basis from which the actuation sequence to be implemented on a target Lab-on-chip is synthesized. In this paper, we investigate the possibility of using this sequence graph as a reference model for debugging erroneous reaction executions with respect to the desired output concentration. Our debugging method consists of program slicing with respect to the observable error in the golden implementation. During slicing, we also perform a step-by-step comparison between the slices of the erroneous output with other erroneous and error-free outputs. The reaction steps are then compared to accurately locate the root cause of a given error. In this paper, we consider two different types of assay descriptions, namely (a) unconditional assays, which have a fixed execution path, and (b) conditional assays that alter the execution at runtime depending on the outputs of sensor observations. Experimental results on the Polymerase Chain Reaction (PCR) and Linear Dilution Tree (LDT) and its conditional variant show that our method is able to pinpoint the errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, S.S., et al.: Security implications of cyberphysical digital microfluidic biochips. In: ICCD (2015)

    Google Scholar 

  2. Ali, S.S., et al.: Security assessment of cyberphysical digital microfluidic biochips. TCBB 13(3), 445–458 (2016)

    Google Scholar 

  3. Ananthanarayanan, V., Thies, W.: Biocoder: a programming language for standardizing and automating biology protocols. J. Biol. Eng. 4(1), 13 (2010)

    Article  Google Scholar 

  4. Banerjee, A., Roychoudhury, A., Harlie, J.A., Liang, Z.: Golden implementation driven software debugging. In: Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 177–186. ACM (2010)

    Google Scholar 

  5. Bhattacharjee, S., Banerjee, A., Chakrabarty, K., Bhattacharya, B.B.: Correctness checking of bio-chemical protocol realizations on a digital microfluidic biochip. In: 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems, pp. 504–509. IEEE (2014)

    Google Scholar 

  6. Bhattacharjee, S., Banerjee, A., Ho, T.Y., Chakrabarty, K., Bhattacharya, B.B.: On producing linear dilution gradient of a sample with a digital microfluidic biochip. In: 2013 International Symposium on Electronic System Design (ISED), pp. 77–81. IEEE (2013)

    Google Scholar 

  7. Chakrabarty, K., et al.: Digital Microfluidic Biochips - Synthesis, Testing, and Reconfiguration Techniques. CRC Press, Boca Raton (2007)

    Google Scholar 

  8. Chang, J., Richardson, D.J.: Static and dynamic specification slicing. In: Proceedings of the Fourth Irvine Software Symposium (1994)

    Google Scholar 

  9. Chen, Y.H., Hsu, C.L., Tsai, L.C., Huang, T.W., Ho, T.Y.: A reliability-oriented placement algorithm for reconfigurable digital microfluidic biochips using 3-D deferred decision making technique. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32(8), 1151–1162 (2013)

    Article  Google Scholar 

  10. Choi, J.D., Ferrante, J.: Static slicing in the presence of goto statements. ACM Trans. Program. Lang. Syst. (TOPLAS) 16(4), 1097–1113 (1994)

    Article  Google Scholar 

  11. Grissom, D., Brisk, P.: Path scheduling on digital microfluidic biochips. In: 2012 49th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 26–35. IEEE (2012)

    Google Scholar 

  12. Grissom, D.T., Brisk, P.: Fast online synthesis of digital microfluidic biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(3), 356–369 (2014)

    Article  Google Scholar 

  13. Ho, T.Y., Zeng, J., Chakrabarty, K.: Digital microfluidic biochips: a vision for functional diversity and more than Moore. In: Proceedings of the International Conference on Computer-Aided Design, pp. 578–585. IEEE Press (2010)

    Google Scholar 

  14. Hu, K., Bhattacharya, B.B., Chakrabarty, K.: Fault diagnosis for leakage and blockage defects in flow-based microfluidic biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 35(7), 1179–1191 (2016)

    Article  Google Scholar 

  15. Hu, K., Yu, F., Ho, T.Y., Chakrabarty, K.: Testing of flow-based microfluidic biochips: fault modeling, test generation, and experimental demonstration. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(10), 1463–1475 (2014)

    Article  Google Scholar 

  16. Jaress, C., Brisk, P., Grissom, D.: Rapid online fault recovery for cyber-physical digital microfluidic biochips. In: 2015 IEEE 33rd VLSI Test Symposium (VTS), pp. 1–6. IEEE (2015)

    Google Scholar 

  17. Keszocze, O., Wille, R., Drechsler, R.: Exact routing for digital microfluidic biochips with temporary blockages. In: Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided Design, pp. 405–410. IEEE Press (2014)

    Google Scholar 

  18. Keszocze, O., Wille, R., Ho, T.Y., Drechsler, R.: Exact one-pass synthesis of digital microfluidic biochips. In: Proceedings of the 51st Annual Design Automation Conference, pp. 1–6. ACM (2014)

    Google Scholar 

  19. Luo, Y., Chakrabarty, K., Ho, T.Y.: Error recovery in cyberphysical digital microfluidic biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32(1), 59–72 (2013)

    Article  Google Scholar 

  20. Mao, X., Lei, Y., Dai, Z., Qi, Y., Wang, C.: Slice-based statistical fault localization. J. Syst. Softw. 89, 51–62 (2014)

    Article  Google Scholar 

  21. Mazutis, L., Gilbert, J., Ung, W.L., Weitz, D.A., Griffiths, A.D., Heyman, J.A.: Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8(5), 870 (2013)

    Article  Google Scholar 

  22. Roy, P., Banerjee, A.: A new approach for root-causing attacks on digital microfluidic devices. In: AsianHOST, pp. 1–6 (2016)

    Google Scholar 

  23. Roy, P., Banerjee, A.: Security assessment of synthesized actuation sequences for digital microfluidic biochips. In: 7th International Symposium on Embedded Computing and System Design. ISED 2017, India, pp. 1–4 (2017)

    Google Scholar 

  24. Roy, P., Banerjee, A., Bhattacharya, B.B.: Debugging errors in microfluidic executions. In: Chaki, R., Cortesi, A., Saeed, K., Chaki, N. (eds.) Advanced Computing and Systems for Security. AISC, vol. 996, pp. 143–158. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8969-6_9

    Chapter  Google Scholar 

  25. Roy, S., Kumar, S., Chakrabarti, P.P., Bhattacharya, B.B., Chakrabarty, K.: Demand-driven mixture preparation and droplet streaming using digital microfluidic biochips. In: Proceedings of the 51st Annual Design Automation Conference, pp. 1–6. ACM (2014)

    Google Scholar 

  26. Sista, R., et al.: Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12), 2091–2104 (2008)

    Article  Google Scholar 

  27. Su, F., Chakrabarty, K.: High-level synthesis of digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. (JETC) 3(4), 1 (2008)

    Article  Google Scholar 

  28. Su, F., Hwang, W., Chakrabarty, K.: Droplet routing in the synthesis of digital microfluidic biochips. In: 2006 Proceedings of Design, Automation and Test in Europe. DATE 2006, vol. 1, pp. 1–6. IEEE (2006)

    Google Scholar 

  29. Thies, W., Urbanski, J.P., Thorsen, T., Amarasinghe, S.: Abstraction layers for scalable microfluidic biocomputing. Nat. Comput. 7(2), 255–275 (2008)

    Article  MathSciNet  Google Scholar 

  30. Wu, P.H., Bai, S.Y., Ho, T.Y.: A topology-based eco routing methodology for mask cost minimization. In: 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 507–512. IEEE (2014)

    Google Scholar 

  31. Xu, T., Chakrabarty, K.: Integrated droplet routing in the synthesis of microfluidic biochips. In: Proceedings of the 44th Annual Design Automation Conference, pp. 948–953. ACM (2007)

    Google Scholar 

  32. Yeh, S.H., Chang, J.W., Huang, T.W., Yu, S.T., Ho, T.Y.: Voltage-aware chip-level design for reliability-driven pin-constrained EWOD chips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33, 1302–1315 (2014)

    Article  Google Scholar 

  33. Zhao, Y., Xu, T., Chakrabarty, K.: Integrated control-path design and error recovery in the synthesis of digital microfluidic lab-on-chip. JETC 6(3), 11 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant received from the Science and Engineering Research Board (SERB), Government of India, through an extra-mural research project EMR/2016/005977.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpita Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roy, P., Banerjee, A., Bhattacharya, B.B. (2020). A Methodology for Root-Causing In-field Attacks on Microfluidic Executions. In: Gavrilova, M., Tan, C., Saeed, K., Chaki, N. (eds) Transactions on Computational Science XXXV. Lecture Notes in Computer Science(), vol 11960. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61092-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61092-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61091-6

  • Online ISBN: 978-3-662-61092-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics