Abstract
The need to analyze and visualize distances between objects arises in many use cases. Although the problem to calculate the distance between two polygonal objects may sound simple, real-world scenarios with large models will always be challenging, but optimization techniques – such as space partitioning – can reduce the complexity of the average case significantly.
Our contribution to this problem is a publicly available benchmark to compare distance calculation algorithms. To illustrate the usage, we investigated and evaluated a grid-based distance measurement algorithm.
The authors gratefully acknowledge the support of the Austrian Research Promotion Agency (Forschungsförderungsgesellschaft, FFG) for the research project (K-Projekt) “Advanced Engineering Design Automation (AEDA)”. Furthermore, the authors would like to thank the Government of Styria for its support in the research project “Amber: Abstände, Metriken und deren Berechnung”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alliez, P., Tayeb, S., Wormser, C.: 3D fast intersection and distance computation. CGAL User and Reference Manual (2016)
Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22(4), 469–483 (1996)
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77974-2
van den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. J. Graph. Tools 2, 1–13 (1997)
Blender Documentation Team: Blender 2.78 Manual. Blender Documentation Team (2017)
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: MeshLab: an open-source mesh processing tool. In: Proceedings of the Eurographics Italian Chapter Conference, vol. 6, pp. 129–136 (2008)
Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998)
Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 1, pp. 566–568 (1994)
Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: a hierarchical structure for rapid interference detection. In: Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques, vol. 23, pp. 171–180 (1996)
Gurret, C., Manolopoulos, Y., Papadopoulos, A.N., Rigaux, P.: The BASIS system: a benchmarking approach for spatial index structures. In: Böhlen, M.H., Jensen, C.S., Scholl, M.O. (eds.) STDBM 1999. LNCS, vol. 1678, pp. 152–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48344-6_9
Han, K., Feng, Y.T., Owen, D.R.J.: Performance comparisons of tree-based and cell-based contact detection algorithms. Int. J. Comput. Aided Eng. Softw. 24, 165–181 (2007)
Jorda, L., et al.: The Shape of Comet 67P/Churyumov-Gerasimenko from Rosetta/Osiris Images. AGU Fall Meeting, vol. 47, p. P41C-3943 (2014)
van Kan Parker, M., Zegers, T., Kneissl, T., Ivanov, B., Foing, B., Neukum, G.: 3D structure of the Gusev Crater region. Earth Planet. Sci. Lett. 294, 411–423 (2010)
Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans. Visual Comput. Graphics 4, 21–36 (1998)
Krispel, U., Fellner, D.W., Ullrich, T.: A benchmark for distance measurements. In: Proceedings of the International Conference on Cyberworlds, pp. 120–125 (2018)
Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast distance queries with rectangular swept sphere volumes. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3719–3726 (2000)
Larsson, T., Akenine-Müller, T.: Bounding volume hierarchies of slab cut balls. Comput. Graph. Forum 28, 2379–2395 (2009)
Luebke, D., Watson, B., Cohen, J.D., Reddy, M., Varshney, A.: Level of Detail for 3D Graphics. Morgan Kaufmann, Burlington (2002)
Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: R-Trees: Theory and Applications. AI&KP. Springer, London (2006). https://doi.org/10.1007/978-1-84628-293-5
Moore, A.W.: An introductory tutorial on \(k^d\)-trees. Technical report, Computer Laboratory, University of Cambridge, vol. 209, pp. 1–20 (1991)
Murray, J.D., vanRyper, W.: Encyclopedia of Graphics File Formats, 2nd edn. O’Reilly Media, Sebastapol (1996)
Quinlan, S.: Efficient distance computation between non-convex objects. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3324–3329 (1994)
Ray, S., Simion, B., Brown, A.D.: Jackpine: a benchmark to evaluate spatial database performance. In: Proceedings of the IEEE International Conference on Data Engineering, vol. 27, pp. 1139–1150 (2011)
Schneider, P., Eberly, D.H.: Geometric Tools for Computer Graphics. Morgan Kaufmann, Burlington (2002)
Ullrich, T., Settgast, V., Fellner, D.W.: Abstand: distance visualization for geometric analysis. Project Paper Proceedings of the Conference on Virtual Systems and MultiMedia Dedicated to Digital Heritage (VSMM), vol. 14, pp. 334–340 (2008)
Weller, R., Klein, J., Zachmann, G.: A model for the expected running time of collision detection using AABB trees. In: Proceedings of the Eurographics Symposium on Virtual Environments, vol. 12, pp. 11–17 (2006)
Weller, R., Sagardia, M., Mainzer, D., Hulin, T., Zachmann, G., Preusche, C.: A benchmarking suite for 6-DOF real time collision response algorithms. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, vol. 17, pp. 63–70 (2010)
Yang, S., Yong, J.H., Sun, J.G., Gu, H.J., Paul, J.C.: A cell-based algorithm for evaluating directional distances in GIS. Int. J. Geogr. Inf. Sci. 24, 577–590 (2010)
Ytterlid, R., Shellshear, E.: BVH split strategies for fast distance queries. J. Comput. Graph. Tech. (JCGT) 4, 1–25 (2015)
Zalik, B., Kolingerova, I.: A cell-based point-in-polygon algorithm suitable for large sets of points. Comput. Geosci. 27, 1135–1145 (2001)
Zomorodian, A., Edelsbrunner, H.: Fast software for box intersections. In: Proceedings of the Annual Symposium on Computational Geometry, vol. 16, pp. 129–138 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer-Verlag GmbH Germany, part of Springer Nature
About this chapter
Cite this chapter
Krispel, U., Fellner, D.W., Ullrich, T. (2020). Distance Measurements of CAD Models in Boundary Representation. In: Gavrilova, M., Tan, C., Sourin, A. (eds) Transactions on Computational Science XXXVI. Lecture Notes in Computer Science(), vol 12060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61364-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-662-61364-1_3
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-61363-4
Online ISBN: 978-3-662-61364-1
eBook Packages: Computer ScienceComputer Science (R0)