Abstract
Nature has been a very effective source to develop various Nature Inspired Optimisation algorithms and this has developed into an active area of research. The focus of this paper is to develop a Hybrid Nature-inspired Optimisation Technique and study its application in Face Recognition Problem. Two different hybrid algorithms are proposed in this paper. First proposed algorithm is a hybrid of Gravitational Search Algorithm (GSA) and Big Bang-Big Crunch (BBBC). The other algorithm is an improvement of the first algorithm, which incorporates Stochastic Diffusion Search (SDS) algorithm along with Gravitational Search Algorithm (GSA) and Big Bang-Big Crunch (BB-BC). The hybrid is an enhancement of a single algorithm which when incorporated with similar other algorithms performs better in situations where single algorithms fail to perform well. The algorithm is used to optimize the Eigen vectors generated from Principal Component Analysis. The optimized Eigen faces supplied to SVM classifier provides better face recognition capabilities compared to the traditional PCA vectors. Testing on the face recognition problem, the algorithm showed 95% accuracy in the ORL dataset and better optimization capability on functions like Griewank-rosenbrock, Schaffer F7 in comparison to standard algorithms like Rosenbrock, GA and DASA during the Benchmark Testing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)
Gao, S., Vairappan, C., Wang, Y., Cao, Q., Tang, Z.: Gravitational search algorithm combined with chaos for unconstrained numerical optimization. Appl. Math. Comput. 231, 48–62 (2014)
Choi, C., Lee, J.-J.: Chaotic local search algorithm. Artif. Life Robot. 2(1), 41–47 (1998). https://doi.org/10.1007/BF02471151
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: BGSA: binary gravitational search algorithm. Nat. Comput. 9(3), 727–745 (2010). https://doi.org/10.1007/s11047-009-9175-3
Erol, O.K., Eksin, I.: A new optimization method: Big Bang–Big Crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)
Alatas, B.: Uniform Big Bang–Chaotic Big Crunch optimization. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3696–3703 (2011)
Bishop, J.M.: Stochastic searching networks. In: First IEEE International Conference on Artificial Neural Networks 1989, pp. 329–331. IET (1989)
Al-Rifaie, M.M., Bishop, J.M.: Stochastic diffusion search review. Paladyn, J. Behav. Robot. 4(3), 155–173 (2013)
Rajkiran Gottumukkal, V.K.: An improved face recognition techniques based on modular PCA approach. Pattern Recogn. Lett. 25, 429–436 (2004)
Aishwarya, P., Marcus, K.: Face recognition using multiple eigenface subspaces. J. Eng. Technol. Res. 2, 139–143 (2010)
Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)
Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS 1995. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. IEEE, Nagoya (1995)
Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Proceedings of the First European Conference on Artificial Life 1991, pp. 134–142. MIT Press, Cambridge (1991)
Farasat, A., Menhaj, M.B., Mansouri, T., Moghadam, M.R.S.: ARO: a new model free optimization algorithm inspired from asexual reproduction. Appl. Soft Comput. 10, 1284–1292 (2010)
Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)
Wiskott, L., Fellous, J.-M., Krüger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS, vol. 1296, pp. 456–463. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63460-6_150
Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 12, 2037–2041 (2006)
He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using Laplacian faces. IEEE Trans. Pattern Anal. Mach. Intell. 3, 328–340 (2005)
Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)
Hasançebi, O., Azad, S.K.: An exponential big bang-big crunch algorithm for discrete design optimization of steel frames. Comput. Struct. 110, 167–179 (2012)
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)
Ravi, S., Nayeem, S.: A study on face recognition technique based on Eigenface. Int. J. Appl. Inf. Syst. 5(4), 57–62 (2013)
Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theoret. Comput. Sci. 344(2–3), 243–278 (2005)
Preux, P., Talbi, E.G.: Towards hybrid evolutionary algorithms. Int. Trans. Oper. Res. 6(6), 557–570 (1999)
Al-Arashi, W.H., Ibrahim, H., Suandi, S.A.: Optimizing principal component analysis performance for face recognition using genetic algorithm. Neurocomputing 128, 415–420 (2014)
Olivas, F., Valdez, F., Melin, P., Sombra, A., Castillo, O.: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Inf. Sci. 476, 159–175 (2019)
Caraveo, C., Valdez, F., Castillo, O.: A new optimization meta-heuristic algorithm based on self-defense mechanism of the plants with three reproduction operators. Soft. Comput. 22(15), 4907–4920 (2018). https://doi.org/10.1007/s00500-018-3188-8
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer-Verlag GmbH Germany, part of Springer Nature
About this chapter
Cite this chapter
Goel, L., Neog, A., Aman, A., Kaur, A. (2020). Hybrid Nature-Inspired Optimization Techniques in Face Recognition. In: Gavrilova, M., Tan, C., Sourin, A. (eds) Transactions on Computational Science XXXVI. Lecture Notes in Computer Science(), vol 12060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61364-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-662-61364-1_6
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-61363-4
Online ISBN: 978-3-662-61364-1
eBook Packages: Computer ScienceComputer Science (R0)