Skip to main content

Hybrid Nature-Inspired Optimization Techniques in Face Recognition

  • Chapter
  • First Online:
Transactions on Computational Science XXXVI

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 12060))

  • 308 Accesses

Abstract

Nature has been a very effective source to develop various Nature Inspired Optimisation algorithms and this has developed into an active area of research. The focus of this paper is to develop a Hybrid Nature-inspired Optimisation Technique and study its application in Face Recognition Problem. Two different hybrid algorithms are proposed in this paper. First proposed algorithm is a hybrid of Gravitational Search Algorithm (GSA) and Big Bang-Big Crunch (BBBC). The other algorithm is an improvement of the first algorithm, which incorporates Stochastic Diffusion Search (SDS) algorithm along with Gravitational Search Algorithm (GSA) and Big Bang-Big Crunch (BB-BC). The hybrid is an enhancement of a single algorithm which when incorporated with similar other algorithms performs better in situations where single algorithms fail to perform well. The algorithm is used to optimize the Eigen vectors generated from Principal Component Analysis. The optimized Eigen faces supplied to SVM classifier provides better face recognition capabilities compared to the traditional PCA vectors. Testing on the face recognition problem, the algorithm showed 95% accuracy in the ORL dataset and better optimization capability on functions like Griewank-rosenbrock, Schaffer F7 in comparison to standard algorithms like Rosenbrock, GA and DASA during the Benchmark Testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 12.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  Google Scholar 

  2. Gao, S., Vairappan, C., Wang, Y., Cao, Q., Tang, Z.: Gravitational search algorithm combined with chaos for unconstrained numerical optimization. Appl. Math. Comput. 231, 48–62 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Choi, C., Lee, J.-J.: Chaotic local search algorithm. Artif. Life Robot. 2(1), 41–47 (1998). https://doi.org/10.1007/BF02471151

    Article  Google Scholar 

  4. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: BGSA: binary gravitational search algorithm. Nat. Comput. 9(3), 727–745 (2010). https://doi.org/10.1007/s11047-009-9175-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Erol, O.K., Eksin, I.: A new optimization method: Big Bang–Big Crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)

    Article  Google Scholar 

  6. Alatas, B.: Uniform Big Bang–Chaotic Big Crunch optimization. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3696–3703 (2011)

    Article  Google Scholar 

  7. Bishop, J.M.: Stochastic searching networks. In: First IEEE International Conference on Artificial Neural Networks 1989, pp. 329–331. IET (1989)

    Google Scholar 

  8. Al-Rifaie, M.M., Bishop, J.M.: Stochastic diffusion search review. Paladyn, J. Behav. Robot. 4(3), 155–173 (2013)

    Google Scholar 

  9. Rajkiran Gottumukkal, V.K.: An improved face recognition techniques based on modular PCA approach. Pattern Recogn. Lett. 25, 429–436 (2004)

    Article  Google Scholar 

  10. Aishwarya, P., Marcus, K.: Face recognition using multiple eigenface subspaces. J. Eng. Technol. Res. 2, 139–143 (2010)

    Google Scholar 

  11. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  12. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

  13. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS 1995. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. IEEE, Nagoya (1995)

    Google Scholar 

  14. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Proceedings of the First European Conference on Artificial Life 1991, pp. 134–142. MIT Press, Cambridge (1991)

    Google Scholar 

  15. Farasat, A., Menhaj, M.B., Mansouri, T., Moghadam, M.R.S.: ARO: a new model free optimization algorithm inspired from asexual reproduction. Appl. Soft Comput. 10, 1284–1292 (2010)

    Article  Google Scholar 

  16. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  17. Wiskott, L., Fellous, J.-M., Krüger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS, vol. 1296, pp. 456–463. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63460-6_150

    Chapter  Google Scholar 

  18. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 12, 2037–2041 (2006)

    Article  Google Scholar 

  19. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using Laplacian faces. IEEE Trans. Pattern Anal. Mach. Intell. 3, 328–340 (2005)

    Google Scholar 

  20. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  21. Hasançebi, O., Azad, S.K.: An exponential big bang-big crunch algorithm for discrete design optimization of steel frames. Comput. Struct. 110, 167–179 (2012)

    Article  Google Scholar 

  22. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  23. Ravi, S., Nayeem, S.: A study on face recognition technique based on Eigenface. Int. J. Appl. Inf. Syst. 5(4), 57–62 (2013)

    Google Scholar 

  24. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theoret. Comput. Sci. 344(2–3), 243–278 (2005)

    Article  MathSciNet  Google Scholar 

  25. Preux, P., Talbi, E.G.: Towards hybrid evolutionary algorithms. Int. Trans. Oper. Res. 6(6), 557–570 (1999)

    Article  MathSciNet  Google Scholar 

  26. Al-Arashi, W.H., Ibrahim, H., Suandi, S.A.: Optimizing principal component analysis performance for face recognition using genetic algorithm. Neurocomputing 128, 415–420 (2014)

    Article  Google Scholar 

  27. Olivas, F., Valdez, F., Melin, P., Sombra, A., Castillo, O.: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Inf. Sci. 476, 159–175 (2019)

    Article  Google Scholar 

  28. Caraveo, C., Valdez, F., Castillo, O.: A new optimization meta-heuristic algorithm based on self-defense mechanism of the plants with three reproduction operators. Soft. Comput. 22(15), 4907–4920 (2018). https://doi.org/10.1007/s00500-018-3188-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavika Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goel, L., Neog, A., Aman, A., Kaur, A. (2020). Hybrid Nature-Inspired Optimization Techniques in Face Recognition. In: Gavrilova, M., Tan, C., Sourin, A. (eds) Transactions on Computational Science XXXVI. Lecture Notes in Computer Science(), vol 12060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61364-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61364-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61363-4

  • Online ISBN: 978-3-662-61364-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics