Skip to main content

Physical Environment Reconstruction Beyond Light Polarization for Coherent Augmented Reality Scene on Mobile Devices

  • Chapter
  • First Online:
Transactions on Computational Science XXXVII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 12230))

  • 392 Accesses

Abstract

The integration of virtual objects to appear as part of the real world is the base of photo-realistic augmented reality (AR) scene development. The physical illumination information, environment features, and virtual objects shading materials combined are considered to reach a perceptually coherent final scene. Other research investigated the problem while assuming availability of scene geometry beforehand, pre-computation of light location, or offline execution. In this paper, we incorporated our previous work of direct light detection with real scene understanding features to provide occlusion, plane detection, and scene reconstruction for improved photo-realism. The whole system tackles several problems at once which consists of: (1) physics-based light polarization, (2) location of incident lights detection, (3) reflected lights simulation, (4) shading materials definition, (5) real-world geometric understanding. A validation of the system is performed by evaluating the geometric reconstruction accuracy, direct illumination pose, performance cost, and human perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alhakamy, A., Tuceryan, M.: AR360: dynamic illumination for augmented reality with real-time interaction. In: Proceedings of The 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT), pp. 170–175. IEEE Press (2019). https://doi.org/10.1109/INFOCT.2019.87109822

  2. Alhakamy, A., Tuceryan, M.: CubeMap360: interactive global illumination for augmented reality in dynamic environment. In: 2019 Southeast Conference IEEE Press, pp. 1–8. https://doi.org/10.1109/SoutheastCon42311.2019.9020588

  3. Alhakamy, A., Tuceryan, M.: An empirical evaluation of the performance of real-time illumination approaches: realistic scenes in augmented reality. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2019. LNCS, vol. 11614, pp. 179–195. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25999-0_16

    Chapter  Google Scholar 

  4. Alhakamy, A., Tuceryan, M.: Polarization-based illumination detection for coherent augmented reality scene rendering in dynamic environments. In: Gavrilova, M., Chang, J., Thalmann, N.M., Hitzer, E., Ishikawa, H. (eds.) CGI 2019. LNCS, vol. 11542, pp. 3–14. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22514-8_1

    Chapter  Google Scholar 

  5. Tuceryan, M., et al.: Calibration requirements and procedures for a monitor-based augmented reality system. IEEE Trans. Visual Comput. Graphics 1(3), 255–273 (1995)

    Article  Google Scholar 

  6. Breen, D.E., Whitaker, R.T., Rose, E., Tuceryan, M.: Interactive occlusion and automatic object placement for augmented reality. In: Computer Graphics Forum, vol. 15, pp. 11–22. Wiley Online Library (1996)

    Google Scholar 

  7. Winston, P.H., Horn, B.: The psychology of computer vision, Chap. Obtaining shape from shading information. McGraw-Hill Companies, New York (1975)

    Google Scholar 

  8. Brom, J.M., Rioux, F.: Polarized light and quantum mechanics: an optical analog of the stern-gerlach experiment. Chem. Educ. 7(4), 200–204 (2002)

    Article  Google Scholar 

  9. Chen, H., Wolff, L.B.: Polarization phase-based method for material classification in computer vision. Int. J. Comput. Vision 28(1), 73–83 (1998)

    Article  Google Scholar 

  10. Dai, Y., Hou, W.: Research on configuration arrangement of spatial interface in mobile phone augmented reality environment. In: Tang, Y., Zu, Q., Rodríguez García, J.G. (eds.) HCC 2018. LNCS, vol. 11354, pp. 48–59. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15127-0_5

    Chapter  Google Scholar 

  11. Debevec, P.: Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: Proceedings of ACM SIGGRAPH 1998 the 25th Annual Conference on Computer Graphics and Interactive Techniques, vol. 10, pp. 189–198. ACM (1998). https://doi.org/0-89791-999-8

  12. Dey, T.K.: Curve and Surface Reconstruction: Algorithms with Mathematical Analysis, vol. 23. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  13. Fan, C.L., Lee, J., Lo, W.C., Huang, C.Y., Chen, K.T., Hsu, C.H.: Fixation prediction for 360 video streaming in head-mounted virtual reality. In: Proceedings of the 27th Workshop on Network and Operating Systems Support for Digital Audio and Video, pp. 67–72. ACM (2017)

    Google Scholar 

  14. Franke, T.A.: Delta light propagation volumes for mixed reality. In: 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 125–132 (Oct 2013). https://doi.org/10.1109/ISMAR.2013.6671772

  15. Gruber, L., Langlotz, T., Sen, P., Hoherer, T., Schmalstieg, D.: Efficient and robustradiance transfer for probeless photorealistic augmented reality. In: 2014 IEEE Virtual Reality (VR), pp. 15–20. IEEE (2014)

    Google Scholar 

  16. Gruber, L., Richter-Trummer, T., Schmalstieg, D.: Real-time photometric registration from arbitrary geometry. In: 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 119–128. IEEE (2012)

    Google Scholar 

  17. Gruber, L., Ventura, J., Schmalstieg, D.: Image-space illumination for augmented reality in dynamic environments. In: 2015 IEEE Virtual Reality (VR), pp. 127–134. IEEE (2015)

    Google Scholar 

  18. Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for RGB-D visual odometry, 3D reconstruction and slam. In: 2014 IEEE international conference on Robotics and automation (ICRA), pp. 1524–1531. IEEE (2014)

    Google Scholar 

  19. Jiddi, S., Robert, P., Marchand, E.: Estimation of position and intensity of dynamic light sources using cast shadows on textured real surfaces. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 1063–1067, October 2018. https://doi.org/10.1109/ICIP.2018.8451078

  20. Kán, P.: High-quality real-time global illumination in augmented reality. Ph.D. thesis (2014)

    Google Scholar 

  21. Kán, P., Kaufmann, H.: High-quality reflections, refractions, and caustics in augmented reality and their contribution to visual coherence. In: 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 99–108. IEEE (2012)

    Google Scholar 

  22. Keller, A.: Instant Radiosity. In: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 49–56. ACM Press/Addison-Wesley Publishing Co. (1997)

    Google Scholar 

  23. Meilland, M., Barat, C., Comport, A.: 3D high dynamic range dense visual slam and its application to real-time object re-lighting. In: 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 143–152, October 2013.https://doi.org/10.1109/ISMAR.2013.6671774

  24. Mladenov, B., Damiani, L., Giribone, P., Revetria, R.: A short review of the SDKs and wearable devices to be used for ar application for industrial working environment. Proc. World Congress Eng. Comput. Sci. 1, 23–25 (2018)

    Google Scholar 

  25. Nerurkar, E., Lynen, S., Zhao, S.: System and method for concurrent odometry and mapping, 23 November 2017, uS Patent App. 15/595,617

    Google Scholar 

  26. Ngo Thanh, T., Nagahara, H., Taniguchi, R.i.: Shape and light directions from shading and polarization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2310–2318 (2015)

    Google Scholar 

  27. Nowrouzezahrai, D., Geiger, S., Mitchell, K., Sumner, R., Jarosz, W., Gross, M.: Light factorization for mixed-frequency shadows in augmented reality. In: 201110th IEEE International Symposium on Mixed and Augmented Reality, pp. 173–179, October 2011. https://doi.org/10.1109/ISMAR.2011.6092384

  28. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, vol. 501. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  29. Parisotto, E., Chaplot, D.S., Zhang, J., Salakhutdinov, R.: Global pose estimation with an attention-based recurrent network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 350–35009, June 2018. https://doi.org/10.1109/CVPRW.2018.00061

  30. Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 497–500. ACM (2001)

    Google Scholar 

  31. Rettenmund, D., Fehr, M., Cavegn, S., Nebiker, S.: Accurate visual localization in outdoor and indoor environments exploiting 3d image spaces as spatial reference. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-1, 355–362 (2018). https://doi.org/10.5194/isprs-archives-XLII-1-355-2018

  32. Rhee, T., Petikam, L., Allen, B., Chalmers, A.: Mr360: mixed reality rendering for360 panoramic videos. IEEE Trans. Visual. Comput. Graphics 23(4), 1379–1388 (2017)

    Article  Google Scholar 

  33. Rohmer, K., Grosch, T.: Tiled frustum culling for differential rendering on mobile devices. In: 2015 IEEE International Symposium on Mixed and Augmented Reality, pp. 37–42, September 2015. https://doi.org/10.1109/ISMAR.2015.13

  34. Rohmer, K., Jendersie, J., Grosch, T.: Natural environment illumination: coherent interactive augmented reality for mobile and non-mobile devices. IEEE Trans. Visual Comput. Graphics 23(11), 2474–2484 (2017). https://doi.org/10.1109/TVCG.2017.2734426

    Article  Google Scholar 

  35. Rohmer, K., Büschell, W., Dachselt, R., Grosch, T.: Interactive near-field illumination for photorealistic augmented reality on mobile devices. In: 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 29–38. IEEE (2014)

    Google Scholar 

  36. Schneider, T., Li, M., Burri, M., Nieto, J., Siegwart, R., Gilitschenski, I.: Visual-inertial self-calibration on informative motion segments. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 6487–6494. IEEE(2017)

    Google Scholar 

  37. Shen, L., Zhao, Y., Peng, Q., Chan, J.C.W., Kong, S.G.: An iterative image de-hazing method with polarization. IEEE Trans. Multimed. 21(5), 1093–1107 (2018)

    Article  Google Scholar 

  38. Wang, J., Liu, H., Cong, L., Xiahou, Z., Wang, L.: CNN-monofusion: on-line monocular dense reconstruction using learned depth from single view. In: 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pp. 57–62, October 2018. https://doi.org/10.1109/ISMAR-Adjunct.2018.00034

  39. Weingarten, J., Siegwart, R.: EKF-based 3D slam for structured environment reconstruction. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3834–3839. IEEE (2005)

    Google Scholar 

  40. Yen, S.C., Fan, C.L., Hsu, C.H.: Streaming \(360^{\circ }\); videos to head-mounted virtual reality using dash over quic transport protocol. In: Proceedings of the 24th ACM Workshop on Packet Video, PV 2019, pp. 7–12. ACM, New York (2019). https://doi.org/10.1145/3304114.3325616, http://doi.acm.org/10.1145/3304114.3325616

  41. Zerner, M.C.: Semiempirical molecular orbital methods. Rev. Comput. Chem. 2, 313–365 (1991)

    Google Scholar 

  42. Zhang, C.: Cufusion2: accurate and denoised volumetric 3d object re-construction using depth cameras. IEEE Access 7, 49882–49893 (2019). https://doi.org/10.1109/ACCESS.2019.2911119

    Article  Google Scholar 

Download references

Acknowledgement

The first author is very grateful for the PhD committee support and encouragement: Dr. Mihran Tuceryan, my committee chair; Dr. Shiaofen Fang; Dr. Jiang Yu Zheng; Dr. Snehasis Mukhopadhyay. The completion of this research could not have been accomplished without the sponsor of the Saudi Arabian Cultural Mission (SACM). Also, the authors would like to thank CGI 2019 committee for their invitation to submit an extended version of the paper  [4] on Transactions on Computer Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A’aeshah Alhakamy or Mihran Tuceryan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alhakamy, A., Tuceryan, M. (2020). Physical Environment Reconstruction Beyond Light Polarization for Coherent Augmented Reality Scene on Mobile Devices. In: Gavrilova, M., Tan, C., Chang, J., Thalmann, N. (eds) Transactions on Computational Science XXXVII. Lecture Notes in Computer Science(), vol 12230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61983-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61983-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61982-7

  • Online ISBN: 978-3-662-61983-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics