Abstract
In many domains, it is common to have procedures, with a given sequence of actions to follow. To perform such procedures, virtual reality is a helpful tool as it allows to safely place a user in a given situation as many times as needed, without risk. Indeed, learning in a real situation implies risks for both the studied object – or the patient – (e.g. badly treated injury) and the trainee (e.g. lack of danger awareness). To do this, it is necessary to integrate the procedure in the virtual environment, under the form of a scenario. Creating such a scenario is a difficult task for a domain expert, as the coding skill level needed for that is too high. Often, a developer is needed to manage the creation of the virtual content, with the drawbacks that are implied (e.g. time loss and misunderstandings).
We propose a complete workflow to let the domain expert create their own scenarized content for virtual reality, without any need for coding. This workflow is divided in two steps: first, a new approach is provided to generate a scenario without any code, through the principle of creating by doing. Then, efficient methods are provided to reuse the scenario in an application in different ways, for either a human user guided by the scenario, or a virtual actor controlled by it.
This work is part of the ANR-16-FRQC-0004 INTROSPECT project, and the SUNSET project funded by the ANR-10-LABX-07-01 “Investing for the Future” program.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, R., Karahanna, E.: Time flies when you’re having fun: cognitive absorption and beliefs about information technology usage. MIS Q. 665–694 (2000). https://www.jstor.org/stable/3250951?seq=1
Angros, Jr., R., Johnson, W.L., Rickel, J., Scholer, A.: Learning domain knowledge for teaching procedural skills. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 3, AAMAS 2002, pp. 1372–1378. ACM, New York (2002). https://doi.org/10.1145/545056.545134
Bailenson, J.N., Yee, N., Blascovich, J., Beall, A.C., Lundblad, N., Jin, M.: The use of immersive virtual reality in the learning sciences: digital transformations of teachers, students, and social context. J. Learn. Sci. 17(1), 102–141 (2008). https://doi.org/10.1080/10508400701793141
Bouville, R., Gouranton, V., Boggini, T., Nouviale, F., Arnaldi, B.: #FIVE: high-level components for developing collaborative and interactive virtual environments. In: Proceedings of Eighth Workshop on Software Engineering and Architectures for Realtime Interactive Systems (SEARIS 2015), conjunction with IEEE Virtual Reality (VR), Arles, France, March 2015. https://hal.inria.fr/hal-01147734
Brom, C., Šisler, V., Holan, T.: Story manager in ‘Europe 2045’ uses petri nets. In: Cavazza, M., Donikian, S. (eds.) ICVS 2007. LNCS, vol. 4871, pp. 38–50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77039-8_4
Caillaud, B.: Surgical process mining with test and flip net synthesis. In: Bergenthum, R., Carmona, J. (eds.) Application of Region Theory (ART), Barcelona, Spain, pp. 43–54, July 2013. https://hal.inria.fr/hal-00872284
Chan, J.C.P., Leung, H., Tang, J.K.T., Komura, T.: A virtual reality dance training system using motion capture technology. IEEE Trans. Learn. Technol. 4(2), 187–195 (2011). https://doi.org/10.1109/TLT.2010.27
Chevaillier, P., et al.: Semantic modeling of virtual environments using MASCARET. In: 2012 5th Workshop on Software Engineering and Architectures for Realtime Interactive Systems (SEARIS), pp. 1–8, March 2012. https://doi.org/10.1109/SEARIS.2012.6231174
Claude, G., Gouranton, V., Bouville Berthelot, R., Arnaldi, B.: Short paper: #SEVEN, a sensor effector based scenarios model for driving collaborative virtual environment. In: Nojima, T., Reiners, D., Staadt, O. (eds.) ICAT-EGVE, International Conference on Artificial Reality and Telexistence, Eurographics Symposium on Virtual Environments, Bremen, Germany, pp. 1–4, December 2014. https://hal.archives-ouvertes.fr/hal-01086237
Cremer, J., Kearney, J., Papelis, Y.: HCSM: a framework for behavior and scenario control in virtual environments. ACM Trans. Model. Comput. Simul. (TOMACS) 5(3), 242–267 (1995). https://doi.org/10.1145/217853.217857
Fletcher, J.D.: Does this stuff work? A review of technology used to teach. Tech-Knowlogia Jan-Mar, 10–14 (2003)
Gerbaud, S., Mollet, N., Arnaldi, B.: Virtual environments for training: from individual learning to collaboration with humanoids. In: Hui, K., et al. (eds.) Edutainment 2007. LNCS, vol. 4469, pp. 116–127. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73011-8_14
Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: a ‘cognitive dimensions’ framework. J. Vis. Lang. Comput. 7(2), 131–174 (1996). http://www.sciencedirect.com/science/article/pii/S1045926X96900099
Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results of empirical and theoretical research. In: Advances in Psychology, vol. 52, pp. 139–183. Elsevier (1988). https://www.sciencedirect.com/science/article/pii/S0166411508623869
Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993). https://doi.org/10.1207/s15327108ijap0303_3
Klopfer, E., Perry, J., Squire, K., Jan, M.F., Steinkuehler, C.: Mystery at the museum: a collaborative game for museum education. In: Proceedings of the 2005 Conference on Computer Support for Collaborative Learning, pp. 316–320. International Society of the Learning Sciences (2005). http://dl.acm.org/citation.cfm?id=1149293.1149334
Klopfer, E., Squire, K.: Environmental detectives-the development of an augmented reality platform for environmental simulations. Educ. Technol. Res. Dev. 56, 203–228 (2007)
Lamarche, F., Donikian, S.: Automatic orchestration of behaviours through the management of resources and priority levels. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 3, pp. 1309–1316. ACM (2002). https://doi.org/10.1145/545056.545124
Lécuyer, F., Gouranton, V., Reuzeau, A., Gaugne, R., Arnaldi, B.: Create by doing – action sequencing in VR. In: Gavrilova, M., Chang, J., Thalmann, N.M., Hitzer, E., Ishikawa, H. (eds.) CGI 2019. LNCS, vol. 11542, pp. 329–335. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22514-8_27
Lee, G.A., Nelles, C., Billinghurst, M., Kim, G.J.: Immersive authoring of tangible augmented reality applications. In: Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR 2004, pp. 172–181. IEEE Computer Society, Washington, DC (2004). https://doi.org/10.1109/ISMAR.2004.34
Lugrin, J.L., Cavazza, M.: Making sense of virtual environments: action representation, grounding and common sense. In: Proceedings of the 12th International Conference on Intelligent User Interfaces, pp. 225–234. ACM (2007). https://doi.org/10.1145/1216295.1216336
Marfisi-Schottman, I., George, S., Tarpin-Bernard, F.: Tools and methods for efficiently designing serious games. In: European Conference on Games Based Learning, ECGBL, Copenhagen, Denmark, pp. 226–234 (2010). https://hal.archives-ouvertes.fr/hal-00953318
Mateas, M., Stern, A.: A behavior language for story-based believable agents. IEEE Intell. Syst. 17(4), 39–47 (2002). https://doi.org/10.1109/MIS.2002.1024751
Mitchell, L., Flin, R., Yule, S., Mitchell, J., Coutts, K., Youngson, G.: Evaluation of the scrub practitioners’ list of intraoperative non-technical skills (splints) system. Int. J. Nurs. Stud. 49(2), 201–211 (2012). http://www.sciencedirect.com/science/article/pii/S002074891100335X
Paiva, A., Machado, I., Prada, R.: Heroes, villians, magicians, & dramatis personae in a virtual story creation environment. In: Proceedings of the 6th International Conference on Intelligent User Interfaces, IUI 2001, pp. 129–136. ACM, New York (2001). https://doi.org/10.1145/359784.360314
Slater, M., Usoh, M., Steed, A.: Depth of presence in virtual environments. Presence: Teleoperators Virtual Environ. 3(2), 130–144 (1994). https://doi.org/10.1162/pres.1994.3.2.130
Venkatesh, V., Thong, J.Y., Xu, X.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. 36(1), 157–178 (2012). http://www.academia.edu/download/36422124/Venkateshutaut2.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer-Verlag GmbH Germany, part of Springer Nature
About this chapter
Cite this chapter
Lécuyer, F., Gouranton, V., Reuzeau, A., Gaugne, R., Arnaldi, B. (2020). Action Sequencing in VR, a No-Code Approach. In: Gavrilova, M., Tan, C., Chang, J., Thalmann, N. (eds) Transactions on Computational Science XXXVII. Lecture Notes in Computer Science(), vol 12230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61983-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-662-61983-4_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-61982-7
Online ISBN: 978-3-662-61983-4
eBook Packages: Computer ScienceComputer Science (R0)