Skip to main content

Action Sequencing in VR, a No-Code Approach

  • Chapter
  • First Online:
Transactions on Computational Science XXXVII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 12230))

  • 436 Accesses

Abstract

In many domains, it is common to have procedures, with a given sequence of actions to follow. To perform such procedures, virtual reality is a helpful tool as it allows to safely place a user in a given situation as many times as needed, without risk. Indeed, learning in a real situation implies risks for both the studied object – or the patient – (e.g. badly treated injury) and the trainee (e.g. lack of danger awareness). To do this, it is necessary to integrate the procedure in the virtual environment, under the form of a scenario. Creating such a scenario is a difficult task for a domain expert, as the coding skill level needed for that is too high. Often, a developer is needed to manage the creation of the virtual content, with the drawbacks that are implied (e.g. time loss and misunderstandings).

We propose a complete workflow to let the domain expert create their own scenarized content for virtual reality, without any need for coding. This workflow is divided in two steps: first, a new approach is provided to generate a scenario without any code, through the principle of creating by doing. Then, efficient methods are provided to reuse the scenario in an application in different ways, for either a human user guided by the scenario, or a virtual actor controlled by it.

This work is part of the ANR-16-FRQC-0004 INTROSPECT project, and the SUNSET project funded by the ANR-10-LABX-07-01 “Investing for the Future” program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://assetstore.unity.com/packages/tools/animation/final-ik-14290.

References

  1. Agarwal, R., Karahanna, E.: Time flies when you’re having fun: cognitive absorption and beliefs about information technology usage. MIS Q. 665–694 (2000). https://www.jstor.org/stable/3250951?seq=1

  2. Angros, Jr., R., Johnson, W.L., Rickel, J., Scholer, A.: Learning domain knowledge for teaching procedural skills. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 3, AAMAS 2002, pp. 1372–1378. ACM, New York (2002). https://doi.org/10.1145/545056.545134

  3. Bailenson, J.N., Yee, N., Blascovich, J., Beall, A.C., Lundblad, N., Jin, M.: The use of immersive virtual reality in the learning sciences: digital transformations of teachers, students, and social context. J. Learn. Sci. 17(1), 102–141 (2008). https://doi.org/10.1080/10508400701793141

    Article  Google Scholar 

  4. Bouville, R., Gouranton, V., Boggini, T., Nouviale, F., Arnaldi, B.: #FIVE: high-level components for developing collaborative and interactive virtual environments. In: Proceedings of Eighth Workshop on Software Engineering and Architectures for Realtime Interactive Systems (SEARIS 2015), conjunction with IEEE Virtual Reality (VR), Arles, France, March 2015. https://hal.inria.fr/hal-01147734

  5. Brom, C., Šisler, V., Holan, T.: Story manager in ‘Europe 2045’ uses petri nets. In: Cavazza, M., Donikian, S. (eds.) ICVS 2007. LNCS, vol. 4871, pp. 38–50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77039-8_4

    Chapter  Google Scholar 

  6. Caillaud, B.: Surgical process mining with test and flip net synthesis. In: Bergenthum, R., Carmona, J. (eds.) Application of Region Theory (ART), Barcelona, Spain, pp. 43–54, July 2013. https://hal.inria.fr/hal-00872284

  7. Chan, J.C.P., Leung, H., Tang, J.K.T., Komura, T.: A virtual reality dance training system using motion capture technology. IEEE Trans. Learn. Technol. 4(2), 187–195 (2011). https://doi.org/10.1109/TLT.2010.27

    Article  Google Scholar 

  8. Chevaillier, P., et al.: Semantic modeling of virtual environments using MASCARET. In: 2012 5th Workshop on Software Engineering and Architectures for Realtime Interactive Systems (SEARIS), pp. 1–8, March 2012. https://doi.org/10.1109/SEARIS.2012.6231174

  9. Claude, G., Gouranton, V., Bouville Berthelot, R., Arnaldi, B.: Short paper: #SEVEN, a sensor effector based scenarios model for driving collaborative virtual environment. In: Nojima, T., Reiners, D., Staadt, O. (eds.) ICAT-EGVE, International Conference on Artificial Reality and Telexistence, Eurographics Symposium on Virtual Environments, Bremen, Germany, pp. 1–4, December 2014. https://hal.archives-ouvertes.fr/hal-01086237

  10. Cremer, J., Kearney, J., Papelis, Y.: HCSM: a framework for behavior and scenario control in virtual environments. ACM Trans. Model. Comput. Simul. (TOMACS) 5(3), 242–267 (1995). https://doi.org/10.1145/217853.217857

    Article  Google Scholar 

  11. Fletcher, J.D.: Does this stuff work? A review of technology used to teach. Tech-Knowlogia Jan-Mar, 10–14 (2003)

    Google Scholar 

  12. Gerbaud, S., Mollet, N., Arnaldi, B.: Virtual environments for training: from individual learning to collaboration with humanoids. In: Hui, K., et al. (eds.) Edutainment 2007. LNCS, vol. 4469, pp. 116–127. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73011-8_14

    Chapter  Google Scholar 

  13. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments: a ‘cognitive dimensions’ framework. J. Vis. Lang. Comput. 7(2), 131–174 (1996). http://www.sciencedirect.com/science/article/pii/S1045926X96900099

    Article  Google Scholar 

  14. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (task load index): results of empirical and theoretical research. In: Advances in Psychology, vol. 52, pp. 139–183. Elsevier (1988). https://www.sciencedirect.com/science/article/pii/S0166411508623869

  15. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993). https://doi.org/10.1207/s15327108ijap0303_3

    Article  Google Scholar 

  16. Klopfer, E., Perry, J., Squire, K., Jan, M.F., Steinkuehler, C.: Mystery at the museum: a collaborative game for museum education. In: Proceedings of the 2005 Conference on Computer Support for Collaborative Learning, pp. 316–320. International Society of the Learning Sciences (2005). http://dl.acm.org/citation.cfm?id=1149293.1149334

  17. Klopfer, E., Squire, K.: Environmental detectives-the development of an augmented reality platform for environmental simulations. Educ. Technol. Res. Dev. 56, 203–228 (2007)

    Article  Google Scholar 

  18. Lamarche, F., Donikian, S.: Automatic orchestration of behaviours through the management of resources and priority levels. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 3, pp. 1309–1316. ACM (2002). https://doi.org/10.1145/545056.545124

  19. Lécuyer, F., Gouranton, V., Reuzeau, A., Gaugne, R., Arnaldi, B.: Create by doing – action sequencing in VR. In: Gavrilova, M., Chang, J., Thalmann, N.M., Hitzer, E., Ishikawa, H. (eds.) CGI 2019. LNCS, vol. 11542, pp. 329–335. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22514-8_27

    Chapter  Google Scholar 

  20. Lee, G.A., Nelles, C., Billinghurst, M., Kim, G.J.: Immersive authoring of tangible augmented reality applications. In: Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR 2004, pp. 172–181. IEEE Computer Society, Washington, DC (2004). https://doi.org/10.1109/ISMAR.2004.34

  21. Lugrin, J.L., Cavazza, M.: Making sense of virtual environments: action representation, grounding and common sense. In: Proceedings of the 12th International Conference on Intelligent User Interfaces, pp. 225–234. ACM (2007). https://doi.org/10.1145/1216295.1216336

  22. Marfisi-Schottman, I., George, S., Tarpin-Bernard, F.: Tools and methods for efficiently designing serious games. In: European Conference on Games Based Learning, ECGBL, Copenhagen, Denmark, pp. 226–234 (2010). https://hal.archives-ouvertes.fr/hal-00953318

  23. Mateas, M., Stern, A.: A behavior language for story-based believable agents. IEEE Intell. Syst. 17(4), 39–47 (2002). https://doi.org/10.1109/MIS.2002.1024751

    Article  Google Scholar 

  24. Mitchell, L., Flin, R., Yule, S., Mitchell, J., Coutts, K., Youngson, G.: Evaluation of the scrub practitioners’ list of intraoperative non-technical skills (splints) system. Int. J. Nurs. Stud. 49(2), 201–211 (2012). http://www.sciencedirect.com/science/article/pii/S002074891100335X

    Article  Google Scholar 

  25. Paiva, A., Machado, I., Prada, R.: Heroes, villians, magicians, & dramatis personae in a virtual story creation environment. In: Proceedings of the 6th International Conference on Intelligent User Interfaces, IUI 2001, pp. 129–136. ACM, New York (2001). https://doi.org/10.1145/359784.360314

  26. Slater, M., Usoh, M., Steed, A.: Depth of presence in virtual environments. Presence: Teleoperators Virtual Environ. 3(2), 130–144 (1994). https://doi.org/10.1162/pres.1994.3.2.130

    Article  Google Scholar 

  27. Venkatesh, V., Thong, J.Y., Xu, X.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q. 36(1), 157–178 (2012). http://www.academia.edu/download/36422124/Venkateshutaut2.pdf

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavien Lécuyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lécuyer, F., Gouranton, V., Reuzeau, A., Gaugne, R., Arnaldi, B. (2020). Action Sequencing in VR, a No-Code Approach. In: Gavrilova, M., Tan, C., Chang, J., Thalmann, N. (eds) Transactions on Computational Science XXXVII. Lecture Notes in Computer Science(), vol 12230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61983-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61983-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61982-7

  • Online ISBN: 978-3-662-61983-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics