Skip to main content

Tree Species Modelling for Digital Twin Cities

  • Chapter
  • First Online:
Transactions on Computational Science XXXVIII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 12620))

Abstract

Creating vegetation contents for a digital twin city entails generating dynamic 3D plant models in a large scale to represent the actual vegetation in the city. To enable high-fidelity environmental simulations and analysis applications, we model individual trees at a species level of detail. The 3D models are generated procedurally based on their botanical species profiles within the constraints of measurements and growth spaces derived from laser-scanned point cloud data. Users can conveniently define the known profile of a species by using a species profile template that we formulated based on species growth processes and patterns. Based on the given species profile and solving for the unknowns within the growth space constraints, a species model will be grown through iterations of our formulated growth rules. We show that this methodology produces structurally-representative species models with respect to their actual physical and species characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arroyo Ohori, K., Biljecki, F., Kumar, K., Ledoux, H., Stoter, J.: Modeling cities and landscapes in 3D with CityGML. In: Borrmann, A., König, M., Koch, C., Beetz, J. (eds.) Building Information Modeling, pp. 199–215. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92862-3_11

    Chapter  Google Scholar 

  2. Barthélémy, D., Caraglio, Y.: Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 99, 375–407 (2007)

    Article  Google Scholar 

  3. Bernard, J., McQuillan, I.: A fast and reliable hybrid approach for inferring L-systems. In: The 2018 Conference on Artificial Life: A Hybrid of the European Conference on Artificial Life (ECAL) and the International Conference on the Synthesis and Simulation of Living Systems (ALIFE) (30), pp. 444–451 (2018)

    Google Scholar 

  4. Borchert, R., Honda, H.: Control of development in the bifurcating branch system of Tabebuia rosea: a computer simulation. Bot. Gaz. 145(2), 184–195 (1984)

    Article  Google Scholar 

  5. Boudon, F., Pradal, C., Cokelaer, T., Prusinkiewicz, P., Godin, C.: L-Py: an L-system simulation framework for modeling plant architecture development based on a dynamic language. Front. Plant Sci. 3, 76 (2012)

    Article  Google Scholar 

  6. Chan, W.L., et al.: Wind loading on scaled down fractal tree models of major urban tree species in Singapore. Wind Impacts on Forests and Trees in a Changing Climate – A Special Issue in Collaboration with the IUFRO Working Party 8.03.06 (2020)

    Google Scholar 

  7. Paine, C.E.T., et al.: How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods Ecol. Evol. 3, 245–256 (2012)

    Article  Google Scholar 

  8. Gobeawan, L., et al.: Modeling trees for virtual Singapore: from data acquisition to CityGML models. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XLII-4/W10, 55–62 (2018)

    Google Scholar 

  9. Gobeawan, L., et al.: Species-level tree biomechanical models. In: 9th IUFRO Wind and Trees Conference (2020)

    Google Scholar 

  10. Gobeawan, L., et al.: Convenient tree species modeling for virtual cities. In: Gavrilova, M., Chang, J., Thalmann, N.M., Hitzer, E., Ishikawa, H. (eds.) CGI 2019. LNCS, vol. 11542, pp. 304–315. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22514-8_25

    Chapter  Google Scholar 

  11. Godin, C., Costes, E., Sinoquet, H.: A method for describing plant architecture which integrates topology and geometry. Ann. Bot. 84(3), 343–357 (1999). http://www.jstor.org/stable/42766003

  12. Godin, C., Sinoquet, H.: Functional-structural plant modelling. New Phytol. 166(3), 705–708 (2005)

    Article  Google Scholar 

  13. Hallé, F., Oldeman, R.A.A., Tomlinson, P.B.: Tropical Trees and Forests: An Architectural Analysis. Springer, New York (1978). https://doi.org/10.1007/978-3-642-81190-6

    Book  Google Scholar 

  14. Hu, S., Li, Z., Zhang, Z., He, D., Wimmer, M.: Efficient tree modeling from airborne lidar point clouds. Comput. Graph. 67(C), 1–13 (2017)

    Google Scholar 

  15. Joo, P.H., et al.: Wind load prediction on single tree with integrated approach of L-system fractal model, wind tunnel, and tree aerodynamic simulation. AIP Adv. 10(6) (2020)

    Google Scholar 

  16. Kamal, M., Phinn, S., Johansen, K.: Object-based approach for multi-scale mangrove composition mapping using multi-resolution image datasets. Remote Sens. 7(4), 4753–4783 (2015)

    Article  Google Scholar 

  17. Kang, M., Hua, J., De Reffye, P., Jaeger, M.: Parameter identification of plant growth models with stochastic development, pp. 98–105 (2016)

    Google Scholar 

  18. Kass, R.E., Carlin, B.P., Gelman, A., Neal, R.M.: Markov chain monte Carlo in practice: a roundtable discussion. Am. Stat. 52(2), 93–100 (1998)

    MathSciNet  Google Scholar 

  19. Lim, C.W., et al.: Generation of tree surface mesh models from point clouds using skin surfaces. In: 15th International Conference on Computer Graphics Theory and Applications, pp. 83–92 (2020)

    Google Scholar 

  20. Lin, E.S., Teo, L.S., Yee, A.T.K., Li, Q.H.: Populating large scale virtual city models with 3D trees. In: 55th IFLA (International Federation of Landscape Architects) World Congress (2018)

    Google Scholar 

  21. Lin, E.S., Gobeawan, L., Yee, A.T.K., Wong, S.T., Poto, M., Tandon, A.: PlantXML: a data exchange format for tree information. In: 2nd International IAG Workshop on BIM and GIM Integration (2019)

    Google Scholar 

  22. Lindenmayer, A.: Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theor. Biol. 18(3), 280–299 (1968)

    Article  Google Scholar 

  23. Lintermann, B., Deussen, O.: Interactive modeling of plants. IEEE Comput. Graph. Appl. 19(1), 56–65 (1999)

    Article  Google Scholar 

  24. Livny, Y., et al.: Texture-lobes for tree modelling. ACM Trans. Graph. 30(4), 53:1–53:10 (2011)

    Article  Google Scholar 

  25. Longay, S., Runions, A., Boudon, F., Prusinkiewicz, P.: TreeSketch: interactive procedural modeling of trees on a tablet. In: Kara, L., Singh, K. (eds.) EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling. Cagliari, Italy (2012)

    Google Scholar 

  26. Makowski, M., Hädrich, T., Scheffczyk, J., Michels, D.L., Pirk, S., Pałubicki, W.: Synthetic silviculture: multi-scale modeling of plant ecosystems. ACM Trans. Graph. 38(4) (2019). https://doi.org/10.1145/3306346.3323039

  27. McKay, M.D.: Latin hypercube sampling as a tool in uncertainty analysis of computer models. In: Proceedings of the 24th Conference on Winter Simulation, WSC 1992, pp. 557–564. ACM, New York (1992)

    Google Scholar 

  28. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)

    Book  Google Scholar 

  29. National Research Foundation Singapore: Virtual Singapore. https://www.nrf.gov.sg/programmes/virtual-singapore

  30. Niese, T., Pirk, S., Albrecht, M., Benes, B., Deussen, O.: Procedural Urban Forestry (2020)

    Google Scholar 

  31. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  32. Reche-Martinez, A., Martin, I., Drettakis, G.: Volumetric reconstruction and interactive rendering of trees from photographs. ACM Trans. Graph. 23(3), 720–727 (2004)

    Article  Google Scholar 

  33. Sagar, M., Miranda, J., Dhawan, V., Dharmaraj, S.: The growing trend of city-scale digital twins around the world (2020). https://opengovasia.com/the-growing-trend-of-city-scale-digital-twins-around-the-world/

  34. Sievänen, R., Godin, C., Dejong, T., Nikinmaa, E.: Functional-structural plant models: a growing paradigm for plant studies. Ann. Bot. 114, 599–603 (2014)

    Article  Google Scholar 

  35. Stava, O., et al.: Inverse procedural modelling of trees. Comput. Graph. Forum 33(6), 118–131 (2014)

    Article  Google Scholar 

  36. Talle, J., Kosinka, J.: Evolving L-systems in a competitive environment. In: Magnenat-Thalmann, N., et al. (eds.) CGI 2020. LNCS, vol. 12221, pp. 326–350. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61864-3_28

    Chapter  Google Scholar 

  37. Vos, J., Evers, J.B., Buck-Sorlin, G.H., Andrieu, B., Chelle, M., de Visser, P.H.B.: Functional-structural plant modelling: a new versatile tool in crop science. J. Exp. Bot. 61(8), 2101–2115 (2010)

    Article  Google Scholar 

  38. Weber, J., Penn, J.: Creation and rendering of realistic trees. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1995, pp. 119–128. ACM, New York (1995)

    Google Scholar 

  39. Xu, H., Gossett, N., Chen, B.: Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans. Graph. 26(4) (2007)

    Google Scholar 

  40. Xu, L., Mould, D.: Procedural tree modeling with guiding vectors. Comput. Graph. Forum 34(7), 47–56 (2015)

    Article  Google Scholar 

  41. Yi, L., Li, H., Guo, J., Deussen, O., Zhang, X.: Tree growth modelling constrained by growth equations. Comput. Graph. Forum 37(1), 239–253 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Research Foundation Singapore, Virtual Singapore Award no. NRF2015VSG-AA3DCM001-034. Authors thank colleagues at IHPC (A*STAR), NParks, and GovTech for their valuable input and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Like Gobeawan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gobeawan, L., Wise, D.J., Wong, S.T., Yee, A.T.K., Lim, C.W., Su, Y. (2021). Tree Species Modelling for Digital Twin Cities. In: Gavrilova, M.L., Tan, C.K. (eds) Transactions on Computational Science XXXVIII. Lecture Notes in Computer Science(), vol 12620. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63170-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63170-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63169-0

  • Online ISBN: 978-3-662-63170-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics