Skip to main content

Implicit Power Indices for Measuring Indirect Control in Corporate Structures

  • Chapter
  • First Online:
Transactions on Computational Collective Intelligence XXXVI

Abstract

This article deals with measuring indirect control in complex corporate shareholding networks using the concept of power indices from cooperative game theory. We focus on the approaches by Mercik-Łobos and Stach-Mercik which measure the control power of all firms involved in shareholding networks with algorithms based on the raw Johnston index. We point out how these approaches can be generalized replacing the raw Johnston index by various other power indices in a modular fashion. We further extend the algorithmic framework by investigating more than one regression and present requirements for software and modelling. Finally, we test the new framework of generalized implicit power indices for a network with 21 players and discuss how properties of the underlying power index like efficiency or null player removability influence the measurements of indirect control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Algaba, E., Bilbao, J.M., Fernández Garcıa, J.R.: The distribution of power in the European constitution. Eur. J. Oper. Res. 176(3), 1752–1766 (2007)

    Article  Google Scholar 

  2. Algaba, E., Bilbao, J.M., Fernández Garcıa, J.R., López, J.: Computing power indices in weighted multiple majority games. Math. Soc. Sci. 46(1), 63–80 (2003)

    Article  MathSciNet  Google Scholar 

  3. Algaba, E., Fragnelli, V., Sánchez-Soriano, J.: Handbook of the Shapley value. CRC Press (2020). https://doi.org/10.1201/9781351241410

  4. Algaba, E., Fragnelli, V., Sánchez-Soriano, J.: The Shapley value, a paradigm of fairness. In: Algaba, E., Fragnell, V., Sánchez-Soriano, J. (eds.) Handbook of the Shapley Value, pp. 17–29. CRC Press (2020). https://doi.org/10.1201/9781351241410

  5. Bang-Jensen, J., Gutin, G.Z.: Digraphs: Theory, Algorithms and Applications. Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-84800-998-1

    Book  MATH  Google Scholar 

  6. Banzhaf, J.F.: Weighted voting doesn’t work: a mathematical analysis. Rutgers L. Rev. 19, 317–343 (1965)

    Google Scholar 

  7. Berghammer, R., Bolus, S.: On the use of binary decision diagrams for solving problems on simple games. Eur. J. Oper. Res. 222(3), 529–541 (2012)

    Article  MathSciNet  Google Scholar 

  8. Berghammer, R., Bolus, S., Rusinowska, A., De Swart, H.: A relation-algebraic approach to simple games. Eur. J. Oper. Res. 210(1), 68–80 (2011)

    Article  MathSciNet  Google Scholar 

  9. Bertini, C., Freixas, J., Gambarelli, G., Stach, I.: Comparing power indices. Int. Game Theory Rev. 15(02), 1340004 (2013)

    Article  MathSciNet  Google Scholar 

  10. Bertini, C., Gambarelli, G., Stach, I., Zola, M.: On some applications of the Shapley-Shubik index for finance and politics. In: Algaba, E., Fragnell, V., Sánchez-Soriano, J. (eds.) Handbook of the Shapley Value, pp. 393–418. CRC Press (2020). https://doi.org/10.1201/9781351241410

  11. Bertini, C., Mercik, J., Stach, I.: Indirect control and power. Oper. Res. Decis. 26(2), 7–30 (2016). https://doi.org/10.5277/ord160202

    Article  MathSciNet  Google Scholar 

  12. Bertini, C., Stach, I.: Banzhaf voting power measure. In: Dowding, K. (ed.) Encyclopedia of Power, pp. 54–55. Sage Publications (2011)

    Google Scholar 

  13. Bertini, C., Stach, I.: On public values and power indices. Decis. Making Manuf. Serv. 9(1), 9–25 (2015). https://doi.org/10.7494/dmms.2015.9.1.9

    Article  MathSciNet  MATH  Google Scholar 

  14. Bilbao, J., Fernández, J., Jiménez Losada, A., Lopez, J.: Generating functions for computing power indices efficiently. TOP 8(2), 191–213 (2000)

    Article  MathSciNet  Google Scholar 

  15. Bolus, S.: Power indices of simple games and vector-weighted majority games by means of binary decision diagrams. Eur. J. Oper. Res. 210(2), 258–272 (2011)

    Article  MathSciNet  Google Scholar 

  16. Bolus, S.: A QOBDD-based approach to simple games. Ph.D. thesis, Christian-Albrechts Universität Kiel (2012)

    Google Scholar 

  17. Chakravarty, S.R., Mitra, M., Sarkar, P.: A Course on Cooperative Game Theory. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  18. Crama, Y., Leruth, L.: Control and voting power in corporate networks: concepts and computational aspects. Eur. J. Oper. Res. 178(3), 879–893 (2007). https://doi.org/10.1016/j.ejor.2006.02.020

    Article  MathSciNet  MATH  Google Scholar 

  19. Crama, Y., Leruth, L.: Power indices and the measurement of control in corporate structures. Int. Game Theory Rev. 15(03), 1340017 (2013). https://doi.org/10.1142/S0219198913400173

    Article  MathSciNet  MATH  Google Scholar 

  20. Csardi, G., Nepusz, T., et al.: The igraph software package for complex network research. Int. J. Complex Syst. 1695(5), 1–9 (2006). https://igraph.org/

  21. Deegan, J., Packel, E.: A new index of power for simple n-person games. Int. J. Game Theory 7(2), 113–123 (1978)

    Article  MathSciNet  Google Scholar 

  22. Eddelbuettel, D., et al.: Rcpp: seamless R and C++ integration. J. Stat. Softw. 40(8), 1–18 (2011)

    Article  Google Scholar 

  23. Gambarelli, G., Owen, G.: Indirect control of corporations. Int. J. Game Theory 23(4), 287–302 (1994)

    Article  MathSciNet  Google Scholar 

  24. Gilles, R.P.: The Cooperative Game Theory of Networks and Hierarchies. Springer, Heidelberg (2015)

    Google Scholar 

  25. Gładysz, B., Mercik, J., Stach, I.: Fuzzy shapley value-based solution for communication network. In: Nguyen, N.T., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds.) ICCCI 2019. LNCS (LNAI), vol. 11683, pp. 535–544. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28377-3_44

    Chapter  Google Scholar 

  26. Holler, M.J.: Forming coalitions and measuring voting power. Polit. Stud. 30(2), 262–271 (1982)

    Article  Google Scholar 

  27. Holler, M.J.: Public Goods index. In: Dowding, K. (ed.) Encyclopedia of Power, pp. 541–542. Sage Publications (2011)

    Google Scholar 

  28. Holler, M.J., Li, X.: From public good index to public value. An axiomatic approach and generalization. Control Cybern. 24, 257–270 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Holler, M.J., Napel, S.: Local monotonicity of power: axiom or just a property? Qual. Quant. 38(5), 637–647 (2005)

    Article  Google Scholar 

  30. Holler, M.J., Packel, E.: Power, luck and the right index. Zeitschrift Nationalökonomie 43(1), 21–29 (1983)

    Article  Google Scholar 

  31. Johnston, R.: On the measurement of power: some reactions to Laver. Environ. Plan A 10(8), 907–914 (1978). https://doi.org/10.1068/a100907

    Article  Google Scholar 

  32. Karos, D., Peters, H.: Indirect control and power in mutual control structures. Technical report, Maastricht University, Graduate School of Business and Economics (GSBE) (2013)

    Google Scholar 

  33. Karos, D., Peters, H.: Indirect control and power in mutual control structures. Games Econ. Behav. 92, 150–165 (2015). https://doi.org/10.1016/j.geb.2015.06.003

    Article  MathSciNet  MATH  Google Scholar 

  34. Kirsch, W., Langner, J.: Power indices and minimal winning coalitions. Soc. Choice Welfare 34(1), 33–46 (2010)

    Article  MathSciNet  Google Scholar 

  35. Kurz, S.: Computing the power distribution in the IMF. 10 p. arXiv preprint, arXiv:1603.01443 (2016)

  36. Lange, F., Kóczy, L.Á.: Power indices expressed in terms of minimal winning coalitions. Soc. Choice Welfare 41(2), 281–292 (2013)

    Article  MathSciNet  Google Scholar 

  37. Levy, M.: Control in pyramidal structures. Corp. Govern.: Int. Rev. 17(1), 77–89 (2009)

    Article  Google Scholar 

  38. Levy, M.: The Banzhaf index in complete and incomplete shareholding structures: a new algorithm. Eur. J. Oper. Res. 215(2), 411–421 (2011)

    Article  MathSciNet  Google Scholar 

  39. Levy, M., Szafarz, A.: Cross-ownership: a device for management entrenchment? Rev. Financ. 21(4), 1675–1699 (2017). https://doi.org/10.1093/rof/rfw009

    Article  MATH  Google Scholar 

  40. Malawski, M.: Counting power indices for games with a priori unions. In: Gambarelli, G. (ed.) Essays in Cooperative Games, vol. 36, pp. 125–140. Springer, Boston (2004). https://doi.org/10.1007/978-1-4020-2936-3_10

    Chapter  MATH  Google Scholar 

  41. Malawski, M.: A note on equal treatment and symmetry of values. In: Nguyen, N.T., Kowalczyk, R., Mercik, J., Motylska-Kuźma, A. (eds.) Transactions on Computational Collective Intelligence XXXV. LNCS, vol. 12330, pp. 76–84. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-62245-2_5

    Chapter  Google Scholar 

  42. Matsui, T., Matsui, Y.: A survey of algorithms for calculating power indices of weighted majority games. J. Oper. Res. Soc. Jpn. 43(1), 71–86 (2000)

    MathSciNet  MATH  Google Scholar 

  43. Matsui, Y., Matsui, T.: Np-completeness for calculating power indices of weighted majority games. Theoret. Comput. Sci. 263(1–2), 305–310 (2001)

    Article  MathSciNet  Google Scholar 

  44. Mercik, J., Łobos, K.: Index of implicit power as a measure of reciprocal ownership. In: Nguyen, N.T., Kowalczyk, R., Mercik, J. (eds.) Transactions on Computational Collective Intelligence XXIII. LNCS, vol. 9760, pp. 128–140. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52886-0_8

    Chapter  Google Scholar 

  45. Mercik, J., Ramsey, D.M.: The effect of Brexit on the balance of power in the European union council: an approach based on pre-coalitions. In: Mercik, J. (ed.) Transactions on Computational Collective Intelligence XXVII. LNCS, vol. 10480, pp. 87–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70647-4_7

    Chapter  MATH  Google Scholar 

  46. Mercik, J., Stach, I.: On measurement of control in corporate structures. In: Nguyen, N.T., Kowalczyk, R., Mercik, J., Motylska-Kuźma, A. (eds.) Transactions on Computational Collective Intelligence XXXI. LNCS, vol. 11290, pp. 64–79. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58464-4_7

    Chapter  Google Scholar 

  47. Penrose, L.S.: The elementary statistics of majority voting. J. Roy. Stat. Soc. 109(1), 53–57 (1946). https://doi.org/10.2307/2981392

    Article  Google Scholar 

  48. Riker, W.H.: The first power index. Soc. Choice Welfare 3(4), 293–295 (1986)

    Article  MathSciNet  Google Scholar 

  49. Shapley, L.S.: A value for n-person games. In: Kuhn, H., Tucker, A. (eds.) Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton (1953). https://doi.org/10.1515/9781400881970-018

    Chapter  Google Scholar 

  50. Shapley, L.S., Shubik, M.: A method for evaluating the distribution of power in a committee system. Am. Polit. Sci. Rev. 48(3), 787–792 (1954). https://doi.org/10.2307/1951053

    Article  Google Scholar 

  51. Stach, I.: Shapley-Shubik index. In: Dowding, K. (ed.) Encyclopedia of Power, pp. 603–606. Sage Publications (2011)

    Google Scholar 

  52. Stach, I.: Indirect control of corporations: analysis and simulations. Decis. Making Manuf. Serv. 11(1–2), 31–51 (2017). https://doi.org/10.7494/dmms.2017.11.1-2.31

    Article  MathSciNet  MATH  Google Scholar 

  53. Stach, I.: Sub-coalitional approach to values. In: Mercik, J. (ed.) Transactions on Computational Collective Intelligence XXVII. LNCS, vol. 10480, pp. 74–86. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70647-4_6

    Chapter  Google Scholar 

  54. Stach, I., Mercik, J.: Measurement of control power in corporate networks. Oper. Res. Decis. 31(1), 97–121 (2021). https://doi.org/10.37190/ord210106

    Article  MATH  Google Scholar 

  55. Stach, I., Mercik, J., Bertini, C.: Some propositions of approaches for measuring indirect control power of firms and mutual connections in corporate shareholding structures. In: Nguyen, N.T., Kowalczyk, R., Mercik, J., Motylska-Kuźma, A. (eds.) Transactions on Computational Collective Intelligence XXXV. LNCS, vol. 12330, pp. 116–132. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-62245-2_8

    Chapter  Google Scholar 

  56. Staudacher, J., Anwander, J.: Using the R package CoopGame for the analysis, solution and visualization of cooperative games with transferable utility (2019). https://cran.r-project.org/package=CoopGame. R Vignette

  57. Staudacher, J., et al.: Computing power indices for weighted voting games via dynamic programming. Oper. Res. Decis. 31(2), 123–145 (2021). https://doi.org/10.37190/ord210205

  58. The R Core team and others: R: A language and environment for statistical computing. Vienna, Austria (2021). https://www.r-project.org/

  59. Uno, T.: Efficient computation of power indices for weighted majority games. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 679–689. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35261-4_70

    Chapter  MATH  Google Scholar 

  60. Wickham, H.: R Packages: Organize, Test, Document, and Share Your Code. O’Reilly Media (2015). https://r-pkgs.org/

Download references

Acknowledgements

The first author thanks the funding of the Bavarian State Ministry of Science and Arts. The third author’s contribution to the article was funded under subvention funds for the AGH University of Science and Technology in Krakow, Poland. Moreover, the authors thank two anonymous reviewers for their careful reading of the manuscript and their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Staudacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Staudacher, J., Olsson, L., Stach, I. (2021). Implicit Power Indices for Measuring Indirect Control in Corporate Structures. In: Nguyen, N.T., Kowalczyk, R., Motylska-Kuźma, A., Mercik, J. (eds) Transactions on Computational Collective Intelligence XXXVI. Lecture Notes in Computer Science(), vol 13010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64563-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-64563-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-64562-8

  • Online ISBN: 978-3-662-64563-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics