Skip to main content

Reference Architectures for Closing the IT/OT Gap

  • Chapter
  • First Online:
Digital Transformation

Abstract

The Internet of Things (IoT) is an allegory for the concept of seamlessly connecting intelligent devices. Its application in the industrial domain envisions a next-generation manufacturing industry. Initiatives such as Industry 4.0 promise higher flexibility, improved quality and productivity. Nonetheless, the enhancements cause an increased complexity in a factory and its organisation as they require a seamless collaboration between all involved units, technological systems and individuals. One way of coping with the extended additional complexity is by utilising Architectural Reference Models (ARMs). State-of-the-art architectures combine different perspectives with a standard model to accommodate design choices, remove knowledge barriers and link the physical and virtual realm. This chapter introduces the basic concepts behind architectural designs and points out historical connections and differences between current ARMs. Moreover, it addresses the needs of converging the historically separated Information Technology (IT) and Operational Technology (OT) and exemplifies in a use case how ARMs can assist in closing the gap. Finally, the chapter serves as a foundation for the following chapters, introducing architectural concepts like cloud, fog and edge computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tactics are state-of-the-art methodologies used in today’s system architectures.

  2. 2.

    Quality properties are externally visible non-functional properties of a system such as performance, security, or scalability [10].

  3. 3.

    The RFC 7230 family describes the HTTP protocol in detail.

  4. 4.

    https://www.acatech.de/projekt/forschungsbeirat-industrie-4-0/

  5. 5.

    https://www.iiconsortium.org/press-room/01-31-19.htm

  6. 6.

    More about the IT/OT gap follows in Sect. 5.

  7. 7.

    For further details, see International Electrotechnical Commission [IEC] standards 62890, 62264, and 61512.

  8. 8.

    In the following paragraphs, the differences between IIRA and RAMI 4.0 are given priority as IoT-A and IIRA do not specify communication technologies.

  9. 9.

    FORA—Fog Computing for Robotics and Industrial Automation: http://www.fora-etn.eu/.

References

  1. IoT-A, “IoT-A Internet of Things Architecture. https://cordis.europa.eu/project/id/257521,” VDI/VDE INNOVATION + TECHNIK GMBH, 2012.

  2. H. Lasi, P. Fettke, H. G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Business and Information Systems Engineering, vol. 6, no. 4, pp. 239–242, 2014.

    Google Scholar 

  3. A. Drejer, “Integrating product and technology development,” International Journal of Technology Management, vol. 24, no. 2–3, pp. 124–142, 2002. https://doi.org/10.1504/IJTM.2002.003048.

  4. M. Weyrich and C. Ebert, “Reference architectures for the Internet of Things,” IEEE Software, vol. 33, no. 1, pp. 112–116, 2016.

    Google Scholar 

  5. Harp, Derek R and Gregory-Brown, Bengt, “IT / OT Convergence Bridging the Divide,” NexDefense, p. 23, 2015.

    Google Scholar 

  6. M. Amadeo, C. Campolo, A. Iera, and A. Molinaro, “Named data networking for IoT: An architectural perspective,” in 2014 European Conference on Networks and Communications (EuCNC), 2014, pp. 1–5.

    Google Scholar 

  7. E. Woods and N. Rozanski, “Using Architectural Perspectives,” in 5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05), 2005, pp. 25–35.

    Google Scholar 

  8. P. Shames and T. Yamada, “Reference Architecture for Space Data Systems,”

    Google Scholar 

  9. N. Rozanski and E. Woods, “Applying viewpoints and views to software architecture,” Open University White Paper, 2005.

    Google Scholar 

  10. N. Rozanski and E. Woods, Software systems architecture: working with stakeholders using viewpoints and perspectives. Addison-Wesley, 2012.

    Google Scholar 

  11. A. Serbanati, C. M. Medaglia, and U. B. Ceipidor, “Building Blocks of the Internet of Things: State of the Art and Beyond,” in Deploying RFID-Challenges, Solutions, and Open Issues, IntechOpen, 2011.

    Google Scholar 

  12. C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and B. A. Hamilton, “Reference model for service oriented architecture 1.0,” OASIS standard, vol. 12, no. S 18, 2006.

    Google Scholar 

  13. DIN SPEC 91345:2016-04, “Reference Architecture Model Industrie 4.0 (RAMI4.0),” DIN Deutsches Institut für Normung, 2016.

    Google Scholar 

  14. T. J. Williams, “The Purdue enterprise reference architecture,” Computers in Industry, vol. 24, no. 2–3, pp. 141–158, 1994.

    Google Scholar 

  15. N. Naik, “Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP,” in 2017 IEEE International Systems Engineering Symposium (ISSE), 2017, pp. 1–7. https://doi.org/10.1109/SysEng.2017.8088251.

  16. D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting with the SOA-based Internet of Things: Discovery, query, selection, and on-demand provisioning of Web Services,” IEEE Transactions on Services Computing, vol. 3, no. 3, pp. 223–235, 2010.

    Google Scholar 

  17. B. Li and J. Yu, “Research and application on the smart home based on component technologies and Internet of Things,” Procedia Engineering, vol. 15, pp. 2087–2092, 2011.

    Google Scholar 

  18. M. H. Valipour, B. Amirzafari, K. N. Maleki, and N. Daneshpour, “A brief survey of software architecture concepts and service oriented architecture,” Proceedings - 2009 2nd IEEE International Conference on Computer Science and Information Technology, ICCSIT 2009, no. April 2014, pp. 34–38, 2009.

    Google Scholar 

  19. A. P. Castellani, N. Bui, P. Casari, M. Rossi, Z. Shelby, and M. Zorzi, “Architecture and protocols for the Internet of Things: A case study,” 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops, PERCOM Workshops 2010, no. June 2014, pp. 678–683, 2010.

    Google Scholar 

  20. I. Ishaq, J. Hoebeke, J. Rossey, E. D. Poorter, I. Moerman, and P. De-meester, “Enabling the Web of Things: facilitating deployment, discovery and resource access to IoT objects using embedded web services,” International Journal of Web and Grid Services, vol. 10, no. 2/3, p. 218, 2014.

    Google Scholar 

  21. V. Stirbu, “Towards a RESTful Plug and Play Experience in the Web of Things,” in 2008 IEEE International Conference on Semantic Computing, IEEE, Aug. 2008, pp. 512–517.

    Google Scholar 

  22. “Industrial Internet Reference Architecture (IIRA),” Industrial Internet Consortium, 2015.

    Google Scholar 

  23. OpenFog Consortium, OpenFog Consortium, 2015. [Online]. Available: https://www.openfogconsortium.org (visited on 09/07/2018).

  24. O. Logvinov, “IEEE 2413-2019 – IEEE Standard for an Architectural Framework for the Internet of Things (IoT),” IEEE SA Standards Association, Standard, 2019.

    Google Scholar 

  25. P. Varga, F. Blomstedt, L. L. Ferreira, J. Eliasson, M. Johansson, J. Delsing, and I. M. de Soria, “Making system of systems interoperable–The core components of the Arrowhead framework,” Journal of Network and Computer Applications, vol. 81, pp. 85–95, 2017.

    Google Scholar 

  26. European Research Cluster on the Internet of Things (IREC), European Research Cluster on the Internet of Things (IREC), 2021. [Online]. Available: http://www.internet-of-things-research.eu/index.html.

  27. T. Sauter, S. Soucek, W. Kastner, and D. Dietrich, “The Evolution of Factory and Building Automation,” IEEE Industrial Electronics Magazine, vol. 5, no. 3, pp. 35–48, 2011.

    Google Scholar 

  28. W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Architecture. Springer Science & Business Media, 2009.

    Google Scholar 

  29. G. Pardo-Castellote, “OMG data-distribution service: Architectural overview,” Distributed Computing Systems Workshops, 2003. Proceedings. 23rd International Conference on (2003) 200–206, pp. 200–206, 2003.

    Google Scholar 

  30. J. Swetina, G. Lu, P. Jacobs, F. Ennesser, and J. Song, “Toward a standardized common M2M service layer platform: Introduction to onem2m,” IEEE Wireless Communications, vol. 21, no. 3, pp. 20–26, 2014. https://doi.org/10.1109/MWC.2014.6845045.

  31. S. Schriegel, T. Kobzan, and J. Jasperneite, “Investigation on a distributed SDN control plane architecture for heterogeneous time sensitive networks,” in 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Jun. 2018, pp. 1–10.

    Google Scholar 

  32. M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1, pp. 17–27.

    Google Scholar 

  33. F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Computing: A Platform for Internet of Things and Analytics,” in Big Data and Internet of Things: A Roadmap for Smart Environments, Studies in Computational Intelligence, vol. 546, Springer International Publishing, 2014, pp. 169–186.

    Google Scholar 

  34. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp. 2347–2376.

    Google Scholar 

  35. P. Pop, B. Zarrin, M. Barzegaran, S. Schulte, S. Punnekkat, J. Ruh, and W. Steiner, “The FORA fog computing platform for industrial IoT,” Information Systems, vol. 98, p. 101–727, 2021, issn: 0306–4379. https://doi.org/10.1016/j.is.2021.101727. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306437921000053.

  36. P. Denzler, J. Ruh, M. Kadar, C. Avasalcai, and W. Kastner, “Towards consolidating industrial use cases on a common fog computing platform,” in 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1, 2020, pp. 172–179. https://doi.org/10.1109/ETFA46521.2020.9211885.

  37. S. A. Boyer, SCADA Supervisory Control and Data Acquisition. USA: International Society of Automation, 2010.

    Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 764785, FORA—Fog Computing for Robotics and Industrial Automation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kastner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Denzler, P., Kastner, W. (2023). Reference Architectures for Closing the IT/OT Gap. In: Vogel-Heuser, B., Wimmer, M. (eds) Digital Transformation. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65004-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65004-2_4

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65003-5

  • Online ISBN: 978-3-662-65004-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics