Skip to main content

Empirical Study of the Model Generalization for Argument Mining in Cross-Domain and Cross-Topic Settings

  • Chapter
  • First Online:
Transactions on Large-Scale Data- and Knowledge-Centered Systems LII

Abstract

To date, the number of studies that address the generalization of argument models is still relatively small. In this study, we extend our stacking model from argument identification to an argument unit classification task. Using this model, and for each of the learned tasks, we address three real-world scenarios concerning the model robustness over multiple datasets, different domains and topics. Consequently, we first compare single-datset learning (SDL) with multi-dataset learning (MDL). Second, we examine the model generalization over completely unseen dataset in our cross-domain experiments. Third, we study the effect of sample and topic sizes on the model performance in our cross-topic experiments. We conclude that, in most cases, the ensemble learning stacking approach is more stable over the generalization tests than a transfer learning DistilBERT model. In addition, the argument identification task seems to be easier to generalize across shifted domains than argument unit classification. This work aims at filling the gap between computational argumentation and applied machine learning with regard to the model generalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://research.ibm.com/interactive/project-debater/index.html.

  2. 2.

    https://github.com/Alaa-Ah/Stacked-Model-for-Argument-Mining.

References

  1. Baker, A.: Simplicity, the Stanford Encyclopedia of Philosophy. Metaphysics Research Lab (2016)

    Google Scholar 

  2. Lawrence, J., Reed, C.: Argument mining: a survey. Comput. Linguist. 45(4), 765–818 (2020)

    Article  Google Scholar 

  3. Palau, R.M., Moens, M.F.: Argumentation mining: the detection, classification and structure of arguments in text. In: Proceedings of the 12th International Conference on Artificial Intelligence and Law, pp. 98–107 (2009)

    Google Scholar 

  4. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  5. Stab, C., Gurevych, I.: Annotating argument components and relations in persuasive essays. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics. Technical papers, pp. 1501–1510 (2014)

    Google Scholar 

  6. Song, Y., Heilman, M., Klebanov, B.B., Deane, P.: Applying argumentation schemes for essay scoring. In: Proceedings of the First Workshop on Argumentation Mining, pp. 69–78 (2014)

    Google Scholar 

  7. Samadi, M., Talukdar, P., Veloso, M., Blum, M.: Claimeval: integrated and flexible framework for claim evaluation using credibility of sources. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  8. Alhamzeh, A., Bouhaouel, M., Egyed-Zsigmond, E., Mitrovic, J.: Distilbert-based argumentation retrieval for answering comparative questions. In: Working Notes of CLEF (2021)

    Google Scholar 

  9. Al-Khatib, K., Wachsmuth, H., Hagen, M., Köhler, J., Stein, B.: Cross-domain mining of argumentative text through distant supervision. In: Proceedings of NAACL-HLT, pp. 1395–1404 (2016)

    Google Scholar 

  10. McCoy, R.T., Min, J., Linzen, T.: BERTs of a feather do not generalize together: Large variability in generalization across models with similar test set performance. In: Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pp. 217–227. Association for Computational Linguistics (2020)

    Google Scholar 

  11. Alhamzeh, A., Bouhaouel, M., Egyed-Zsigmond, E., Mitrović, J., Brunie, L., Kosch, H.: A stacking approach for cross-domain argument identification. In: Strauss, C., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2021. LNCS, vol. 12923, pp. 361–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86472-9_33

    Chapter  Google Scholar 

  12. Liga, D., Palmirani, M.: Transfer learning with sentence embeddings for argumentative evidence classification (2020)

    Google Scholar 

  13. Wambsganss, T., Molyndris, N., Söllner, M.: Unlocking transfer learning in argumentation mining: a domain-independent modelling approach. In: 15th International Conference on Wirtschaftsinformatik (2020)

    Google Scholar 

  14. Zhang, W.E., Sheng, Q.Z., Alhazmi, A., Li, C.: Adversarial attacks on deep-learning models in natural language processing: a survey. ACM Trans. Intell. Syst. Technol. (TIST) 11(3), 1–41 (2020)

    Google Scholar 

  15. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  16. Schiller, B., Daxenberger, J., Gurevych, I.: Stance detection benchmark: how robust is your stance detection? KI - Künstl. Intell. 35(3), 329–341 (2021). https://doi.org/10.1007/s13218-021-00714-w

    Article  Google Scholar 

  17. Ajjour, Y., Chen, W.F., Kiesel, J., Wachsmuth, H., Stein, B.: Unit segmentation of argumentative texts. In: Proceedings of the 4th Workshop on Argument Mining, pp. 118–128 (2017)

    Google Scholar 

  18. Al Khatib, K., Wachsmuth, H., Kiesel, J., Hagen, M., Stein, B.: A news editorial corpus for mining argumentation strategies. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 3433–3443 (2016)

    Google Scholar 

  19. Habernal, I., Gurevych, I.: Argumentation mining in user-generated web discourse. Comput. Linguist. 43(1), 125–179 (2017)

    Article  MathSciNet  Google Scholar 

  20. Bouslama, R., Ayachi, R., Amor, N.B.: Using convolutional neural network in cross-domain argumentation mining framework. In: Ben Amor, N., Quost, B., Theobald, M. (eds.) SUM 2019. LNCS (LNAI), vol. 11940, pp. 355–367. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35514-2_26

    Chapter  Google Scholar 

  21. Elangovan, A., He, J., Verspoor, K.: Memorization vs. generalization: quantifying data leakage in NLP performance evaluation. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 1325–1335 (2021)

    Google Scholar 

  22. Huan, X., Mannor, S.: Robustness and generalization. Mach. Learn. 86(3), 391–423 (2012). https://doi.org/10.1007/s10994-011-5268-1

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, J.: Generalizing to unseen domains: a survey on domain generalization. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  24. Stab, C., Gurevych, I.: Parsing argumentation structures in persuasive essays. Comput. Linguist. 43(3), 619–659 (2017)

    Article  MathSciNet  Google Scholar 

  25. Stab, C.: Argumentative Writing Support by Means of Natural Language Processing, p. 208 (2017)

    Google Scholar 

  26. Aharoni, E.: A benchmark dataset for automatic detection of claims and evidence in the context of controversial topics. In: Proceedings of the First Workshop on Argumentation Mining, pp. 64–68 (2014)

    Google Scholar 

  27. Sagi, O., Rokach, L.: Ensemble learning: a survey. Wiley Interdis. Rev.: Data Min. Knowl. Discovery 8(4), e1249 (2018)

    Google Scholar 

  28. Moens, M.F., Boiy, E., Palau, R.M., Reed, C.: Automatic detection of arguments in legal texts. In: Proceedings of the 11th International Conference on Artificial Intelligence and Law, pp. 225–230 (2007)

    Google Scholar 

  29. Stab, C., Gurevych, I.: Identifying argumentative discourse structures in persuasive essays. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 46–56 (2014)

    Google Scholar 

  30. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint. arXiv:1910.01108 (2019)

  31. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint. arXiv:1810.04805 (2018)

  32. Ryu, M., Lee, K.: Knowledge distillation for bert unsupervised domain adaptation. arXiv preprint. arXiv:2010.11478 (2020)

  33. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint. arXiv:1711.05101 (2017)

  34. De Winter, J.C.F.: Using the student’s t-test with extremely small sample sizes. Pract. Assess. Res. Eval. 18(1), 10 (2013)

    Google Scholar 

  35. Zhang, Z., et al.: Semantics-aware BERT for language understanding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, pp. 9628–9635 (2020)

    Google Scholar 

  36. Rogers, A., Kovaleva, O., Rumshisky, A.: A primer in bertology: what we know about how bert works. Trans. Assoc. Comput. Linguist. 8, 842–866 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

figure a

The project on which this report is based was partly funded by the German Federal Ministry of Education and Research (BMBF) under the funding code 01|S20049. The author is responsible for the content of this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Alhamzeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alhamzeh, A. et al. (2022). Empirical Study of the Model Generalization for Argument Mining in Cross-Domain and Cross-Topic Settings. In: Hameurlain, A., Tjoa, A.M. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems LII. Lecture Notes in Computer Science(), vol 13470. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-66146-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-66146-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-66145-1

  • Online ISBN: 978-3-662-66146-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics