Abstract
JSON Schema is an expressive schema language for describing JSON documents which combines structural assertions with Boolean operators, including negation, and is able to express recursion. In typical situations, JSON Schema is used to validate JSON documents to ensure safety of operations processing these JSONdata. In many other situations, it is important to generate JSONdocuments starting from a JSON Schema schema as it allows for testing applications and for assessing interesting properties like scalability of processing engines. While existing work [6, 8] addressed the witness generation problem, by discarding the \(\mathtt {\small uniqueItems}\) operator, our goal lifts this restriction and addresses the problem of generating multiple instances from a given schema. Since the witness generation problem, which is equivalent to checking the satisfiability in JSON Schema, is known to be EXPTIME-complete even when \(\mathtt {\small uniqueItems}\) is absent [10], our solution adopts an optimistic approach which trades completeness for soundness and efficiency. From a practical point of view, our approach is very satisfactory since, on most real-life scenarios, it is very efficient and highly precise, as testified by our experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The source code is available at https://gitlab.lip6.fr/attouche/jschemadatagenerator.
References
Json everything. https://github.com/gregsdennis/json-everything
Json faker. https://github.com/json-schema-faker/json-schema-faker
Json generator. https://github.com/jimblackler/jsongenerator
Json schema test suite (2020). https://github.com/json-schema-org/JSON-Schema-Test-Suite/blob/master/tests/draft6/additionalProperties.json
Json schema validator (2022). Accessed 19 Sept 2022
Attouche, L., et al.: A tool for json schema witness generation (2021)
Attouche, L., Baazizi, M.A., Colazzo, D.: Overview and perspectives for optimistic JSON schema witness generarion. In: 23èmes Journées Bases de Données Avancées, BDA (2023)
Attouche, L., Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C., Scherzinger, S.: Witness generation for JSON schema. Proc. VLDB Endow. 15(13), 4002–4014 (2022)
Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C., Scherzinger, S.: Negation-closure for JSON schema. Theor. Comput. Sci. 955, 113823 (2023)
Bourhis, P., Reutter, J.L., Suárez, F., Vrgoc, D.: JSON: data model, query languages and schema specification. In: Sallinger, E., Van den Bussche, J., Geerts, F. (eds.) PODS, pp. 123–135. ACM (2017)
Habib, A., Shinnar, A., Hirzel, M., Pradel, M.: Finding data compatibility bugs with JSON subschema checking. In: ISSTA 2021: 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event, Denmark, 11–17 July 2021, pp. 620–632 (2021)
Hall, P.: On representatives of subsets. J. London Math. Soc. 26–30 (1935)
Møller, A.: dk.brics.automaton – Finite-State Automata and Regular Expressions for Java (2021). https://www.brics.dk/automaton/. Accessed 19 Sept 2022
Wright, A., Andrews, H., Hutton, B.: JSON schema validation: a vocabulary for structural validation of json - draft-handrews-json-schema-validation-02. Technical report, Internet Engineering Task Force (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature
About this chapter
Cite this chapter
Attouche, L., Baazizi, MA., Colazzo, D. (2024). Optimistic Data Generation for JSON Schema. In: Hameurlain, A., Tjoa, A.M., Akbarinia, R., Bonifati, A. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems LVI. Lecture Notes in Computer Science(), vol 14790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-69603-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-662-69603-3_5
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-69602-6
Online ISBN: 978-3-662-69603-3
eBook Packages: Computer ScienceComputer Science (R0)