Skip to main content

Salient Representation of Volume Data

  • Conference paper
Data Visualization 2001

Part of the book series: Eurographics ((EUROGRAPH))

Abstract

We introduce a novel method for identification of objects of interest in volume data. Our approach conveys the information contained in two essentially different concepts, the object’s boundaries and the narrow solid structures, in an easy and uniform way. The second order derivative operators in directions reaching minimal response are employed for this task. To show the superior performance of our method, we provide a comparison with its main competitor—surface extraction from areas of maximal gradient magnitude. We show that our approach provides the possibility to represent volume data by a subset of a nominal size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever. Multiscale vessel enhancement filtering. Lecture Notes in Computer Science, 1496:130–137, 1998.

    Article  Google Scholar 

  2. J. Hlad?vka, A. König, and E. Gröller. Exploiting eigenvalues of the Hessian matrix for volume decimation. In Proceedings of 9th International Conference in Central Europe on Computer Graphics, Visualization, and Computer Vision (WSCG 2001), pages 124–129, 2001.

    Google Scholar 

  3. M. Hopf and T. Ertl. Accelerating 3D convolution using graphics hardware. In Proceedings of the 1999 IEEE Conference on Visualization (VIS-99), pages 471–474, 1999.

    Google Scholar 

  4. Intel Corporation. IPL-Intel Image Processing Library, v2.5, 2000.

    Google Scholar 

  5. B. Jahne. Digital Image Processing, chapter 5: Multiscale Representation, pages 121–138. Springer-Verlag Berlin Heidelberg, 4th edition, 1997.

    Google Scholar 

  6. G. Kindlmann and J. W. Durkin. Semi-automatic generation of transfer functions for direct volume rendering. In Proceedings of IEEE Volume Visualization, pages 79–86, 1998.

    Google Scholar 

  7. M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applications, 8(3):29–37, May 1988.

    Article  Google Scholar 

  8. T. Lindeberg. Edge detection and ridge detection with automatic scale selection. In Proceedings of IEEE Computer Vision and Pattern Recognition, pages 465–470, 1996.

    Google Scholar 

  9. L. Mroz, H. Häuser, and E. Gröller. Interactive high-quality maximum intensity projection. Computer Graphics Forum, 19(3):341–350, 2000.

    Article  Google Scholar 

  10. H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The VolumePro real-time ray-casting system. In Proceedings of ACM SIGGRAPH, pages 251–260, 1999.

    Google Scholar 

  11. H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface elements as rendering primitives. In SIGGRAPH 2000, Computer Graphics Proceedings, pages 335–342, 2000.

    Google Scholar 

  12. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C, chapter 11: Eigensystems, pages 456–469. Cambridge University Press, 2 edition, 1992.

    Google Scholar 

  13. S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering system for large meshes. In SIGGRAPH 2000, Computer Graphics Proceedings, pages 343–352, 2000.

    Google Scholar 

  14. T. Saito. Real-time previewing for volume visualization. In Symposium on Volume Visualization, pages 79–106, 1994.

    Google Scholar 

  15. Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. Gerig, and R. Kikinis. 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis, 2(2):143–168, 1998.

    Article  Google Scholar 

  16. Y. Sato, C.-F. Westin, A. Bhalerao, S. Nakajima, N. Shiraga, S. Tamura, and R. Kikinis. Tissue classification based on 3D local intensity structures for volume rendering. IEEE Transactions on Visualization and Computer Graphics, 6(2):160–180, 2000.

    Article  Google Scholar 

  17. P. M. Sutton, C. D. Hansen, and H.-W. S. D. Schikore. A case study of isosurface extraction algorithm performance. In Data Visualization 2000, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Hladůvka, J., König, A., Gröller, E. (2001). Salient Representation of Volume Data. In: Ebert, D.S., Favre, J.M., Peikert, R. (eds) Data Visualization 2001. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6215-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6215-6_22

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83674-3

  • Online ISBN: 978-3-7091-6215-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics