Abstract
In this paper we consider the eigen pair set
where [A] is a given real n x n interval matrix (cf. Alefeld and Herzberger (1983), e.g., for interval analysis) and \(\mathcal{P}\) is some fixed property such as symmetry, Toeplitz form, etc.. Before we study this set in greater detail we mention other ones which are related to it: When dealing with systems of linear equations
(ℝn x n set of real n x n matrices, ℝn set of real vectors with n components) there sometimes occurs the problem of varying the input data \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{A} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{b} \) within certain tolerances and looking for the set S of the resulting solutions x*.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alefeld, G., Herzberger, J. (1983): Introduction to interval computations. Academic Press, New York
Alefeld, G., Kreinovieh, V., Mayer, G. (1997): On the shape of the symmetric, persymmetric, and skew-symmetric solution set. SIAM J. Matrix Anal. Appl. 18: 693–705
Alefeld, G., Kreinovieh, V., Mayer, G. (1998): The shape of the solution set of linear interval equations with dependent coeffieients. Math. Nachr. 192: 23–26
Alefeld, G., Kreinovieh, V., Mayer, G. (1999): On the solution set of particular classes of linear systems. Submitted for publication.
Alefeld, G., Mayer, G. (1995): On the symmetric and unsymmetric solution set of interval systems. SIAM J. Matrix Anal. Appl. 16: 1223–1240
Beeck, H. (1972): über Struktur und Abschützungen der Lösungsmenge von linearen Gleichungssystemen mit Intervallkoeffizienten. Computing 10: 231–244
Deif, A.S. (1991): The interval eigenvalue problem. Z. angew. Math. Mech. 71: 61–64
Hartfiel, D.J. (1980): Concerning the solution set of Ax = b where P ≤ A ≤ ” and p ≤ b ≤ q. Numer. Math. 35: 355–359
Jansson, C. (1991a): Rigorous sensitivity analysis for real symmetric matrices with uncertain data. In: Kaueher, E., Markov; S. M., Mayer, G. (eds.): Computer arithmetic, scientific computation and mathematical modelling. Baltzer, Basel, pp. 293–316
Jansson, C. (1991b): Interval linear systems with symmetric matrices, skew-symmetric matrices and dependencies in the right hand side. Computing 46: 265–274
Maier, T. (1985): Intervall-Input-Output-Rechnung. Mathematical Systems in Economics 101, Hain, Königstein/Ts.
Oettli, W., Prager, W. (1964): Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numer. Math. 6: 405–409
Rohn, J. (1984): Interval linear systems. Freiburger Intervall-Berichte 84/7: 33–58
Rump, S.M. (1994): Verification methods for dense and sparse systems of equations. In: Herzberger, J. (ed.): Topics in validated computations. Elsevier, Amsterdam, pp. 63–135
Schrijver, A. (1986): Theory of linear and integer programming. Wiley, New York
Wilkinson, J.H. (1963): Rounding errors in algebraic processes. Prentice-Hall, Englewood Cliffs, New Jersey
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Wien
About this paper
Cite this paper
Alefeld, G., Kreinovich, V., Mayer, G. (2001). Modifications of the Oettli-Prager Theorem with Application to the Eigenvalue Problem. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds) Symbolic Algebraic Methods and Verification Methods. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6280-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-7091-6280-4_3
Publisher Name: Springer, Vienna
Print ISBN: 978-3-211-83593-7
Online ISBN: 978-3-7091-6280-4
eBook Packages: Springer Book Archive